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Abstract The elemental composition of coal and biomass provides significant parameters used in the design of almost all

energy conversion systems and projects. The laboratory tests to determine the elemental composition of coal and biomass is

time-consuming and costly. However, limited research has suggested that there is a correlation between parameters

obtained from elemental and proximate analyses of these materials. In this study, some predictive models of the elemental

composition of coal and biomass using soft computing and regression analyses have been developed. Thirty-one samples

including parameters of elemental and proximate analyses were used during the analyses to develop multiple prediction

models. Dependent variables for multiple prediction models were selected as carbon, hydrogen, and oxygen. Using volatile

matter, fixed carbon, moisture and ash contents as independent variables, three different prediction models were developed

for each dependent parameter using ANFIS, ANN, and MLR. In addition, a routine for selecting the best predictive model

was suggested in the study. The reliability of the established models was tested by using various prediction performance

indices and the models were found to be satisfactory. Therefore, the developed models can be used to determine the

elemental composition of coal and biomass for practical purposes.
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1 Introduction

The world’s energy demand has steadily increased owing

to rising population and living standards (Chen et al. 2015).

Due to this reason, fossil fuel reserves are ending slowly

(Mohr et al. 2015; Shafiee and Topal 2009). Coal is the

major world energy single source, and it acts as the guar-

antor of energy security, supplying 38% of the whole world

electricity (IEA 2018). Furthermore, it will still account for

26% of the world’s electricity supply in 2040, as predicted

by the International Energy Agency (2018).
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The studies on renewable energy and alternative fuels

around the world have been reported in the literature.

Wood biomass has been acknowledged as a potential

source of renewable energy because of its accessibility in

most areas of the world (Van der stelt et al. 2011). Prop-

erties such as the high quantity of moisture, low bulk

density, low calorific value and high energy requirements

for grinding are the limitations of biomass that restrict its

wider use for power generation (Haseli 2018). One of the

main properties for the utilization of coal and biomass

materials is the elemental composition (Chen et al. 2015).

A special instrument is required to determine the elemental

composition of coal, while data for proximate analysis can

be readily acquired using common equipment (Shen et al.

2010).

The elemental composition of biomass is a significant

asset that defines the amount of energy and evaluates the

clean and efficient use of biomass materials (Chen et al.

2015). The elemental composition is a needed factor in

evaluating the process of chemical conversion and pre-

dicting the flow of flue gas and the quality of air in coal

combustion (Nhuchhen 2016). The proximate analysis is a

fuel property that provides for the chemical composition of

coal and confirms the appropriate usage of coal. Focusing

on proximate and elemental analyses, a number of fuel

parameters can be examined (Mathews et al. 2014).

The characteristics of coal and biomass are necessary for

the production of their potential and also the effective

operation of the energy conversion process. In the past,

several relationships have been established using ultimate

and proximate analyses. Chelgani et al. (2008) established

a technique to predict the grindability of coal by multiple

regression and artificial neural network (ANN) models

from the data obtained from proximate and ultimate anal-

yses. Furthermore, on the basis of the ultimate analysis of

solid, fluid and gaseous fuels, the relationship to predict

higher heating value was established by Channiwala and

ParikhP (2002). Similarly, the heating value of biomass

and municipal solid waste (MSW) was determined using

the data obtained from proximate analysis (Parikh et al.

2007; Komilis et al. 2012). Previous studies have shown

that no studies have established models to predict the ele-

mental composition from the proximate analysis of coal

and biomass materials except for the relationship devel-

oped by Vakkilainen (2000) particularly for black liquor

only. Thus, the existing gap has necessitated the current

study.

The design of energy conversion systems requires the

elemental composition of coal, biomass and other related

materials. Hitherto limited researches on correlations have

been published to evaluate the elemental composition using

proximate analysis of these materials. There has been a

significant increase in recent research on biomass, coal and

related materials, which requires an elemental analysis of

these materials for the assessment of the complete process

of any thermochemical conversion techniques. Therefore,

this research aims to evaluate the elemental composition of

both coal and biomass materials obtained from South

Africa (SA) and Nigeria Coalfields from their proximate

analysis using soft computing and regression analyses. The

study makes use of ANN, adaptive neuro-fuzzy inference

system (ANFIS) and multilinear regression (MLR) based

on laboratory test results to eliminate the need for time-

consuming and costly elemental experimental analysis.

Laboratory tests were conducted to examine the proximate

analysis and elemental analysis of the coal and biomass

materials. The results of the proximate analysis will be

used as the input parameters in the proposed models and

the elemental composition will be the targeted output. The

predicted results of the ANFIS, ANN and MLR will be

compared with the existing models and the model with the

best fit/performance from the coefficient of determination,

average absolute error, average biased error and mean the

absolute error will be proposed for predicting the elemental

composition of both coal and biomass materials.

2 Experimental investigation

To develop the models, proximate and elemental data

relating to different coal samples and biomass (forest and

agricultural wastes) were used to cover a wide range of

values for fixed carbon (FC), moisture (M), volatile matter

(VM), ash (A), carbon (C), hydrogen (H), nitrogen (N),

oxygen (O) and sulphur (S) contents. A total of 31 samples

(8 coal samples from Nigeria (NIG), 8 coal samples from

South Africa (SA),12 wood biomass from SA and 3 refuse-

derived fuels from SA) used for this study were collected

using a grab sampling method. Since there are no specific

sampling protocols identified for biomass materials, the

samples were collected with due care to obtain the most

representative samples. For the coal samples, each sample

was kept in a plastic bag (made from aluminium-coated

polyester) and marked/labelled with a chosen number. The

sample lumps were reduced to appropriate dimensions

(10 mm) using a crusher (Rocklabs MK III). The samples

were milled to a fraction of 250 lm for proximate and

ultimate analyses. The proximate analyses for these sam-

ples were carried out according to the ASTM D5142, with

approximately 1 g used to estimate the A, VM and M

contents. The FC is expressed as the subtraction of the sum

of moisture, volatile matter and ash contents from100%.

The elemental analysis was conducted based on the ASTM

5373-14:2015for CHN with the use of a LECO CHN 628

with an add on 628 S module. Approximately 0.25 g of the

samples were used for the temperature analyses of up to
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1450 �C with an analyzing time of between 60 and 300 s.

A database of proximate and elemental analyses obtained

from the experimental tests for the samples are presented in

Table 1. To enable the general application of the proposed

models, the data set was trained and validated using

ANFIS, ANN, and MLR and compared with one another.

3 Models development

3.1 Artificial neural network

The ANN is a soft computing method that imitates the

human brain in the processing of information, like

reasoning, studying, memorizing and inducing a complex

network. This is made possible through the interconnected

structures comprising several simple processing neurons

having the ability to perform large parallel computations

for data processing and information representation (De-

hghani and Ataee-pour 2011). To create an ANN model,

there are various ways in which the neurons can be con-

nected. The feed-forward (FF) ANN was suggested by

Shahin et al. (2002) to solve extremely non-linear and

complex problems such that time-dependent parameters are

not involved in the input parameters. The multi-layer per-

ceptron (MLP) neural network is a well-recognized FF-

ANNs (Simpson 1990; Haykin 1999; Monjezi et al. 2013).

MLP has several nodes/neurons in 3 layers i.e. input,

Table 1 Proximate and elemental analysis (wt%) data obtained from the experimental tests

Sample ID Materials FC VM A M (Ar) C H N O S

DCFP Biomass 12.22 77.63 0.27 9.88 45.5 6.66 \ 0.0001 37.57 0.12

DCGS 10.67 64.52 0.53 24.28 36.8 6.7 0.58 31.04 0.07

SPGB 15.14 73.89 0.81 10.16 44.5 6.57 0.57 37.27 0.12

PSP 15.2 57.05 1.05 26.69 41.1 6.35 0.8 29.19 0.07

DOCPGB 14.47 77.58 0.44 7.5 46.5 6.6 0.62 38.21 0.13

FWS 9.17 43.74 0.7 46.39 28.5 7.7 0.57 16.08 0.06

G(Fresh) 13.34 59.56 1.38 25.72 39 7.12 0.07 26.69 0.02

G(Dry) 15.92 75.94 1.74 6.4 – – – – –

G-2 years 12.02 53.02 1.77 33.19 32.61 7.65 0.11 24.65 0.02

G-2 years Dry 16.85 75.3 2.44 5.41 – – – – –

G-5-7 years 13.84 54.43 0.91 30.82 35.41 7.41 0.14 25.29 0.02

G5-7 years Dry 19.47 73.63 1.14 5.75 – – – – –

IW (RDF1) Refuse derived fuel 7.76 80.52 8.01 3.71 52.8 8 2.09 25.32 0.07

IW (RDF2) 8.07 85.16 3.61 3.16 56.4 9.11 2.05 25.51 0.16

IW (RDF3) 6.81 87.67 3.15 2.38 64.5 11.17 3.92 14.7 0.18

S1 SA coal 41.83 21.48 32.28 4.41 55.5 3.08 1.32 3.41

S2 41.37 21.35 32.82 4.45 55 3.09 1.29 3.35

S3 40.97 21.17 33.48 4.37 54.2 3.01 1.3 3.64

S4 42.24 21.33 32.08 4.35 53.2 3 1.24 6.13

S5 41 20.12 32.39 6.48 53.3 3.53 1.23 2.9

S6 40.96 22.13 32.56 4.35 54.4 3.52 1.3 3.87

S7 41.79 21.66 32.5 4.05 54.7 3.39 1.34 4.02

S8 42.28 21.34 32.73 3.64 54 3.36 1.32 4.95

NIG1 NIG coal 44.52 30.51 8.35 16.62 60.72 – – – 0.35

NIG2 43.28 31.35 7.72 17.05 63.2 – – – 0.27

NIG3 40.28 33.66 4.83 21.24 58.8 – – – 0.39

NIG4 39.6 33.88 5.59 20.93 60.61 – – – 0.39

NIG5 43.36 31.15 6.81 18.68 61.65 – – – 0.31

NIG6 43.83 30.98 8.12 17.07 62.46 – – – 0.35

NIG7 42.7 32.91 6.54 17.85 62.11 – – – 0.35

NIG8 42.79 31.61 8.54 17.06 62.54 – – – 0.36

‘–‘ Not determined
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hidden and an output connected together by weights. Du

et al. (2002) and Kalinli et al. (2011) have successfully

established the efficiency of MLP ANNs in high-dimen-

sional functional approximation.

However, ANN requires the training of the network

before the results can be interpreted. Various learning

algorithms are used for training MLP-FF but the back-

propagation (BP) algorithm is commonly applied (Rumel-

hart et al. 1986; Fausett 1994; Dreyfus 2005).

The mode of implementation of the BP-ANN is that the

input data is imported into the input layer which initiates

the propagation into the hidden neurons via the weights of

connection. The input from each neuron in the input layer,

Ii, is multiplied by the weight, wik. At each neuron, the

summation of the input signals multiplied with their

respective weights is determined and added to a threshold

value referred to as the bias value, bnk. To obtain the output

of the node, the combined input, Ji, is subjected to a non-

linear transfer function (tan sigmoid or log sigmoid). The

targeted output of the entire network can then be calculated

by applying the same principle as in the case of the input

node but in this case the transfer function, could be non-

linear such as a sigmoidal function or linear (Eq. (1)). In

BP, the signals are propagated from the input layer through

the hidden layer to the output layer, known as forward-

pass, then the system obtained values are compared to the

targeted actual value and system error can be computed

between the two values. The resulting errors are then

returned to the system to update the weights known as

backward-pass. In this process, the errors of both training

and testing datasets are reduced. This procedure is repeated

in the feed-forward-backpropagation ANN until the

resulting errors have converged to the threshold level

specified by the system’s error function, such as the root-

mean-squared error (RMSE). To build the ANN network,

sufficient datasets are required though there is no extant

rule to determine the number of datasets sufficient for the

building of a suitable ANN model. Equation (1) shows the

general form of the principle of operation of the ANN

model.

D ¼ fsig/purlin b0 þ
Xn

k¼1

wk � � � �

fsig bhk þ
Xm

i¼1

wikCi

 !
2
664

3
775

8
>><

>>:

9
>>=

>>;

ð1Þ

where, b0 is the bias in the output layer; wk is the weight of

connection between the k th of the hidden layer and the

single output neuron; bhk is the bias in the k th neuron of the

hidden layer; n is the number of neurons in the hidden

layer; wik is the weight of connection between the i th input

parameter and the hidden layer; Ci is the input variable i; D

is the output variable; fpurlin and fsig are the linear and

nonlinear transfer functions respectively.

3.2 ANN models for the predictions of elemental

compositions

The ANN model proposed in this study was created using

MLP-FF that is trained with the BP training algorithm.

Three different ANN models were performed predicting

each of the H, O, and C. This is necessary because the size

of the matrixes of the targeted outputs is not equal for the

elemental compositions and also to enable fair comparison

with the ANFIS and MLR models. Four inputs variables

representing the A, VM, FC, and M contents were used in

each of the models. A total of 28 experimental datasets

conducted in this study as shown in Table 1 was used for

developing ANN model for C, while 20 parameters each

were used for the respective ANN predictions of H and O.

The ANN model was performed in MATLAB� environ-

ment using its embedded neural network toolbox. The input

and output variables have been scaled between -1 and 1

using Eq. (2) to achieve the dimensional consistency of the

parameters and also to eliminate the over-fitting of the

trained network.

Yi ¼
2ðXi � XminÞ
Xmax � Xmin

� 1 ð2Þ

where Yi is the scaled parameters, Xi is the actual data to be

scaled, Xmax and Xmin are the maximum and minimum

values of the actual data, respectively.

The network architecture with one hidden layer was

adopted in this study and the trial and error approach was

used to arrive at the optimal network architecture. A three

layers (one input, one hidden and one output layers) net-

work with four neurons in the input layer, three neurons in

the hidden layer, and one neuron in the output layer was

chosen for the building of the proposed ANN models. A

non-linear (TANSIG) transfer function was used for both

the input layer and the output layer. The obtained optimal

ANN architecture for the three proposed models is shown

in Fig. 1.

The respective performances of the obtained models for

each of the elemental compositions are shown in Fig. 2.

The figures show that in each of the cases, the mean

squared error decreases up to the points where the best

performances were obtained and their values tend to reach

asymptotic values after the best performance. The pattern

of the curves for the training, validations, and testing are

similar, indicating that the models are successful.

The regression plots of the proposed ANN models are

also illustrated in Fig. 3. The figure shows that the R values

used to train, validate, and test the three models are above
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97%. Hence, the proposed ANNs can successfully predict

the elemental compositions of solid fuels.

To enable the easy application of the proposed ANN

models for the predictions of elemental compositions of the

solid fuels (i.e. coal and biomass), the proposed ANN

models were transformed into the mathematical models

through the weights and biases based on the ANN general

equations presented in Eq. (1). The mathematical formulas

obtained for C, H, and O are as presented in Eqs. (3) to (5).

The predictions directly output from the ANN models and

those of Eqs. (3), (4) and (5) were compared to validate the

mathematically transformed ANN as illustrated in Fig. 4. It

is found that the coefficient of determinants for the three

models is 100% indicating that the proposed equations are

replicates of their respective ANN models.

C ¼ 18 tanhð�0:90519x1 � 1:7974x2 þ � � � 1:6654x3
þ 0:59725Þ þ 46:5 ð3Þ

where

Fig. 1 Adopted ANN architecture for predicting the elemental composition

Fig. 2 Performances of the proposed ANN models for C, H, and O predictions
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Fig. 3 a Regression graphs for the ANN models for C, b Regression graphs for the ANN models for H, c Regression graphs for the ANN models

for O

Fig. 4 Comparison of the ANN mathematical models with the direct ANN simulation outputs
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x1 ¼ tanhð�3:9167þ 0:0232FC � � � � 0:00077VM
þ 0:0755A� 0:00296MÞ

x2 ¼ tanhð1:4133� 0:0525FC � � � � 0:0079VM
þ 0:00669Aþ 0:00202MÞ

x3 ¼ tanhð�2:9884� 0:06FC þ � � � 0:0401VM
þ 0:022A� 0:0404MÞ

H ¼ 4:085 tanhð0:85756y1 þ 1:078y2 þ � � � 1:1217y3
� 0:89233Þ þ 7:085 ð4Þ

where

y1 ¼ tanhð8:0533� 0:1429FC þ � � � 0:0577VM
� 0:2424A� 0:0986MÞ

y2 ¼ tanhð�8:0885� 0:1288FC þ 0:1052VM

þ � � � 0:1327A� 0:0631MÞ
y3 ¼ tanhð2:9588þ 0:05FC � 0:03036VM

� � � � 0:1035Aþ 0:024MÞ
O ¼ 17:655 tanhð�0:55398z1 � 0:99659z2

þ � � � 1:1272z3 � 0:9136Þ þ 20:555

ð5Þ

where

z1 ¼ tanhð�1:4642þ 0:0683FC � 0:041VM

þ � � � 0:0149A� 0:0035MÞ
z2 ¼ tanhð�0:1809þ 0:0008FC � 0:02593VM

þ � � � 0:024Aþ 0:068MÞ
z3 ¼ tanhð�2:1145þ 0:057FC þ 0:01333VM

� � � � 0:0256Aþ 0:0745MÞ

3.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a soft computing method that incorporates the

concept of fuzzy logic into neural networks (Jang 1993). It

is generally used in various aspects of engineering science

and the earth sciences (Habibagahi 2002; Iphar 2012; Sahu

et al. 2011; Sahu and Mahapatra 2013; Onifade et al.

2019). ANFIS has the ability to approximate any real

continuous function on a compact set to any degree of

accuracy (Jang et al. 1997). It uses linguistic information

based on fuzzy logic and the learning capability of the

ANN. ANFIS is a fuzzy mapping algorithm that replicates

and evaluates the input and output data via a hybrid

learning to estimate the optimal distribution of membership

function on the basis of Tagaki-Sugeno-Kang (TSK) fuzzy

inference system (Jang and Gulley 1995; Loukas 2001).

ANFIS is essentially based on the fuzzy ‘‘If–Then’’ rules

from the Takagi and Sugeno fuzzy model (Jang et al. 1997)

as shown in Fig. 5. A typical Sugeno fuzzy system that has

two input parameters, one output parameter as the result,

and two rules are typically displayed in Fig. 5. The cor-

responding ANFIS structure of this system is also shown in

Fig. 5 (Rafiei-Sardooi et al. 2018; Seifi and Riahi 2018). Its

rules are:

Rule 1: If x is A1 and y is B1 Then f = p1x ? q1y ? r1
Rule 2: If x is A2 and y is B2 Then f = p2x ? q2y ? r2

3.4 Descriptions of node functions

The ANFIS architecture has two node types which are

square and circle nodes. In the square node, there is an

unknown parameter while in circle node, there is no

unknown parameter (i.e. only the multiplication of fuzzy

membership functions and the normalization of the firing

strengths take place in the two respective circle nodes). The

node functions in the same layer have the same function

family as explained below:

Layer 1: In this layer, every node output is fuzzified by

membership grades of a fuzzy set equivalent to each input

(Eq. (6)). The membership function of this fuzzy set may

be triangular, trapezoidal, generalized bell and Gaussian

membership functions.

O1i ¼ lAiðxÞ ð6Þ

where x is input to node i, O1i is the membership grade of a

fuzzy set Ai and identifies the degree to which a certain

input x satisfies the quantifier Ai and lAi is the membership

function which could be any form of the afore-mentioned

membership functions. For instance, the lAi for a typical

bell-shaped function is given in Eq. (7).

lAiðxÞ ¼
1

1þ x�ci
ai

� �2� �bi ð7Þ

where ai, bi, and ci are known as premise parameters in this

layer. The parameters control the shape of the function.

Layer 2: Each node in this layer is a circle node labelled

M, the output of which is the product of all Layer 1 outputs

(Eq. (8)):

O2i ¼ wi ¼ lAiðxÞ � lBiðxÞ; i ¼ 1; 2: ð8Þ

The output of each node in this layer is the firing

strength of a rule.

Layer 3: This is a normalized layer. Every node labelled

as encircled N (Fig. 5). Every node in this layer normalizes

the weight function generated from the preceding layer of

the product. The ith node measures the ratio of the firing

strength of the ith rules to the sum of all rule’s firing

strengths as presented in Eq. (9):

O3i ¼ �wi ¼
wi

w1 þ w2

; i ¼ 1; 2: ð9Þ

Layer 4: This layer is the defuzzification layer. Each

node i in this layer is an adaptive node with a node function

as described in Eq. (10).

130 A. I. Lawal et al.

123



O4i ¼ wifi ¼ �wi pixþ qiyþ rið Þ; i ¼ 1; 2:; ð10Þ

where wi is the normalized firing strength from layer 3. The

parameter set of this node is pi, qi, and ri. Parameters in this

layer are termed the consequent parameters. For the input

parameters with three (3) membership functions, for

instance, the fi in Eq. (10) will be

(fi= pix ? qiy ? riz ? si).

Layer 5: The single node in this layer is a fixed node

characterised as R. It calculates the total output as the sum
of all incoming signals as shown in Eq. (11).

O5i ¼
X

�wifi ¼
P

wifiP
wi

; i ¼ 1; 2: ð11Þ

3.5 ANFIS model development for the prediction

of elemental composition

In this study, a five-layer ANFIS model was established to

predict the elemental composition of coal and biomass. The

Grid partitioning approach was used to create the FIS

model and a hybrid technique was used to evaluate the

premise and resulting parameters. A four inputs-one output

model was employed to determine the C, H and O.

A Gaussian type membership function (guessmf) was

selected for inputs and constant type membership function

was used for output when obtaining the fuzzy inference

system for the C and H. The triangular membership func-

tion (trimf) was chosen for the input in the case of O and

the constant type membership function was also used for

the output in the case of O. Each of the input membership

functions was categorised into three linguistics variables.

The low (L); high (H) and very high (VH) linguistic

variables were used for the FC and VM while very low

(VL); low (L) and high (H) were used for the A and M,

respectively. A typical membership function for input 2

(VM) and input 3 (A) with the respective Gaussian and

triangular membership functions is shown in Fig. 6. The

data set was selected randomly but included the highest and

lowest values. The data set was normalized within the

range of 0 and 1. The ANFIS model was implemented in

MATLAB environment.

Eighty-one rules in total were created in each of the

models (Fig. 7). The predictive capability of the models

was tested using eight additional data points having the

same distribution as the training data set for the carbon

while four additional data set each was used for both

Fig. 5 A typical Sugeno fuzzy system with the corresponding ANFIS structure
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hydrogen (H) and oxygen (O) testing, respectively. The

overall performance of the models was compared with

predictions of the other model using the whole data sets

used in developing the models. The premise and the con-

sequence parameters are output as presented in Tables 2

and 3, respectively.

3.6 Multilinear regression (MLR)

The multilinear regression technique is widely used in

different engineering fields to solve a wide range of

problems. For instance, the MLR was used by Shen et al.

(2010) and Parikh et al. (2007) for predicting the elemental

compositions of fuels. In the area of geotechnical engi-

neering, MLR has been used to predict the strength of rock,

rock fragmentation and shear strength parameters by

Gokceoglu and Zorlu (2004), Bahrami et al. (2011) and

Jahed et al. (2014), respectively. MLR is normally utilized

to establish a relationship between the dependent and

independent variables (Onifade 2018; Onifade and Genc

2018). Hence, MLR measures the influence of the depen-

dent variable on the independent variable. For the regres-

sion involving one dependent and one independent

variable, the general regression equation is shown in

Eq. (12).

D ¼ b0 þ b1E ð12Þ

where b is constant, D and E are dependent and indepen-

dent variables, respectively. The equation can be extended

to accommodate more than one independent variables as

presented in Eq. (13).

Fig. 6 Membership function plots for the input variables

Fig. 7 ANFIS model structure
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D ¼ b0 þ b1E1 þ b2E2 þ b3E3 þ � � � bnEn ð13Þ

where E1, E2, E3, … En is different independent variables

to predict D.

The MLR was used in this study for the prediction of the

elemental composition of fuels (coal and biomass). The

dependent variables are C, H, and O whereas the inde-

pendent variables are FC, VM, A, and M. The MLR was

implemented with the OriginPro� software. To do this, the

dependent and independent variables were imported into

the OriginPro� software and under the analysis drawdown

menu, the multilinear regression was selected to perform

the required MLR analysis. The obtained MLR equations

for the three dependent variables are as presented in

Eqs. (14) to (16).

C ¼ 348:4658� 2:36909FC � � � � 2:97122VM � 3:5354A
� 3:67567M

ð14Þ

H ¼ �6156:21þ 61:44349FC þ � � � 61:66506VM
þ 61:74224Aþ 61:65248M ð15Þ

O ¼ 31071:46� 309:621FC � � � � 310:437VM
� 312:201A� 310:789M ð16Þ

4 Results and discussion

4.1 Model comparison

The models developed in the proposed study (Figs. 8, 9,

10) for the prediction of the most important elemental

compositions using the MLR, ANN and ANFIS were

compared with the models suggested in the literature (Shen

et al. 2010, Parikh et al. 2007, Nhuchhen, 2016). Shen et al.

(2010) proposed prediction equations shown in Eqs. (17) to

(19) to predict the elemental composition of biomass from

the proximate analysis. Parikh et al. (2007) also derived

expressions for the calculation of the elemental composi-

tion of biomass materials from their proximate analysis as

shown in Eqs. (20) to (22) (Table 4). Similarly, Nhuchhen

(2016) proposed models for the predictions of C, H, and O

compositions of raw and torrefied biomass using proximate

analysis as shown in Eqs. (23) to (25) in Table 4. The

models proposed by Shen et al. (2010), Parikh et al. (2007)

and Nhuchhen (2016) are based on regression analysis. The

Table 2 Premise parameters

Fuzzy set C H

FC VM FC VM

a c a c a c a c

Membership function parameters

L 0.2075 - 0.0058 0.1672 - 0.0562 0.1939 - 0.0014 0.1581 - 0.0797

H 0.2174 0.5505 0.2360 0.4660 0.2012 0.5434 0.2434 0.4347

VH 0.0598 1.0924 0.2060 1.0054 0.2258 0.9984 0.2149 0.9920

A M A M

VL 0.1871 - 0.0136 0.1712 - 0.0378 0.2076 - 0.0166 0.0624 - 0.0939

L 0.2529 0.5654 0.1932 0.4713 0.2497 0.4852 0.1139 0.4535

H 0.1469 1.0947 0.2223 0.9915 0.2064 1.0154 0.2152 0.9924

Fuzzy set O

FC VM

a b c a b c

Membership function parameters

VL - 0.5000 9.51E-05 0.4997 - 0.5000 - 0.0002 0.4987

L 0.0004 0.5033 0.9897 3.89E-05 0.4997 0.9999

H 0.5007 1.0032 1.5000 0.5012 0.9999 1.5000

A M

VL - 0.5000 - 0.0001 0.4999 - 0.5000 - 0.0002 0.5000

L 0.00076 0.5026 0.9883 0.0030 0.4995 0.9997

H 0.5011 1.0027 1.5000 0.5004 0.9998 1.5000
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predictions of their proposed models were compared with

the predictions of the three models proposed in this study

as presented in Figs. 8, 9, 10.

For the predicted C (Fig. 8), the R2 values of the model

suggested by Shen et al. (2010), Parikh et al. (2007) and

Nhuchhen (2016) are 0.2513, 0.4474 and 0.8327, respec-

tively while the R2 value of the predictions of the MLR,

Table 3 Consequence parameters

Rule No. C H O Rule No. C H O

1 0.000269 - 5.55E-08 0 21 - 0.13223 - 0.97493 - 0.70124

2 - 0.03584 0.007475 1.263766 22 0.660464 0.617999 0.15049

3 0.367674 0.068776 - 2.29527 23 0.043413 0.783686 - 0.7739

4 - 0.01069 - 1.78E-05 0 24 - 0.0132 - 0.08864 - 0.05804

5 - 0.00458 0.001518 0.122963 25 - 8.57E-07 0.00011 0

6 0.034003 0.009663 0.003793 26 - 9.07E-08 0.00013 0

7 - 0.04246 - 0.0002 0 27 - 1.22E-10 2.49E-06 0

8 - 0.00467 9.58E-06 0 28 2.052888 - 6.12E-05 0

9 - 6.19E-06 2.80E-07 0 29 0.5354 - 0.00594 0.521294

10 - 0.54567 - 0.21429 0.374382 30 - 0.24181 0.00431 - 0.12822

11 0.330534 - 0.25255 - 0.15629 31 3.19066 - 0.3794 - 0.16027

12 0.128339 0.725566 1.687672 32 0.982163 0.033292 0.046702

13 0.002659 - 0.00618 0.03973 33 - 0.13389 0.000602 0.021977

14 0.084231 5.416158 - 0.1133 34 1.815552 - 2.79185 1.111512

15 - 0.01717 - 0.39114 2.124643 35 - 4.35343 0.179801 0.292338

16 - 0.00989 - 3.15E-05 0 36 - 0.00721 0.000213 0

17 - 0.00107 0.000835 0 37 2.200396 - 0.2023 1.077944

18 - 1.43E-06 - 9.90E-05 0 38 0.798268 - 0.31535 1.803183

19 1.333115 1.280082 0.372259 39 - 1.80916 1.439211 - 0.83538

20 - 0.18176 0.408581 2.567847 40 - 0.16221 - 0.0668 0.022381

Rule No. C H O Rule No. C H O

41 1.768118 1.159794 - 0.02077 61 2.831948 - 0.52799 0.189404

42 - 0.32267 0.174066 0.80123 62 - 1.14449 0.705989 - 1.65825

43 - 6.08074 - 0.27758 - 0.09156 63 - 0.00229 - 0.02651 0

44 - 1.44597 0.033948 - 0.01137 64 1.83319 - 0.00215 0

45 - 0.00221 - 0.00019 0 65 - 0.36877 - 0.14276 0

46 - 0.28783 - 0.64251 1.968342 66 - 0.17109 - 0.00412 0

47 0.424009 0.634454 - 0.02027 67 0.102522 - 0.10097 0.036951

48 - 0.03492 0.220269 - 0.1278 68 1.019777 - 0.00878 - 0.00178

49 0.005584 - 0.09124 0.057223 69 - 0.12641 - 0.00279 0

50 0.054524 0.282094 - 0.3883 70 1.018698 4.273531 - 2.37353

51 - 0.0031 0.058567 - 0.02009 71 - 0.1586 0.051936 - 0.45608

52 - 0.00114 6.46E-05 0 72 - 0.00035 - 0.00962 0

53 - 0.00017 4.00E-05 0 73 0.000821 - 0.00654 0

54 - 2.41E-07 4.75E-06 0 74 - 0.00099 - 0.0335 0

55 2.119398 - 0.00091 0 75 - 0.0001 - 0.00046 0

56 1.495309 - 0.00011 0 76 0.000731 - 0.0009 0

57 - 0.14283 1.53E-05 0 77 - 0.00048 - 0.00466 0

58 - 9.09923 - 2.58485 2.352429 78 - 8.10E-05 4.03E-05 0

59 2.254854 0.122212 0.293957 79 0.000104 0.001589 0

60 - 0.0914 - 0.0041 0 80 - 5.86E-06 - 1.06E-05 0

81 - 1.66E-08 - 1.60E-06 0
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Fig. 8 Comparison of the predicted C with the measured carbon

Fig. 9 Comparison of the predicted H with the measured hydrogen
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ANN, and ANFIS are 0.8432, 0.9719, 0.9879, respectively.

Based on this comparison, the proposed models give better

predictions of C than the three existing models compared in

this study. On the other hand, the R2 values of the predicted

H using the Shen et al. (2010), Parikh et al. (2007) and

Nhuchhen (2016) are 0.3203, 0.5552 and 0.2854, respec-

tively while those of the present study using MLR, ANN

and ANFIS are 0.9376, 0.9684 and 0.9815, respectively

(Fig. 9). For the O, the R2 values for the Shen et al. (2010),

Parikh et al. (2007) and Nhuchhen (2016) are 0.641, 0.644,

and 0.7396, respectively while those of MLR, ANN, and

ANFIS are 0.941, 0.9861, and 0.9522, respectively

(Fig. 10). In all the compared cases, the proposed models

have the highest coefficient of correlations than the existing

models. Hence, they can give reasonable predictions of the

C, H, and O. To further showcase the performances of the

proposed models, the error analysis was conducted as

presented in the next subsection.

4.2 Error analysis

The performance of the proposed models and the models

obtained in the literature was evaluated using three forms

of estimation errors, which are the mean absolute error

Fig. 10 Comparison of the predicted O with the measured oxygen

Table 4 Adopted models for the validations of the proposed models

S/N Existing model Reference Eq. number

1 C ¼ 0:635FC þ 0:46VM � 0:095A Shen et al. (2010) (17)

2 H ¼ 0:059FC þ 0:06VM þ 0:01A (18)

3 O ¼ 0:34FC þ 0:469VM � 0:023A (19)

4 C ¼ 0:637FC þ 0:455VM Parikh et al. (2007) (20)

5 H ¼ 0:052FC þ 0:062VM (21)

6 O ¼ 0:304FC þ 0:476VM (22)

7 C ¼ 1:0396FC þ 0:0757VM1:3773 Nhuchhen (2016) (23)

8 H ¼ 55:3678� 0:483FC � 0:5319VM � 0:56A (24)

9 O ¼ �0:0198FC þ 0:7244VM0:9239 (25)
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(MAE) (Eq. (26)), average absolute error (AAE)

(Eq. (27)), and average biased error (ABE) (Eq. (28)) as

presented in Table 5.

MAE ¼ 1

n

Xn

i¼1

Ei � Pij j ð26Þ

AAE ¼ 1

n

Xn

i¼1

Pi � Eij j=Eið Þ ð27Þ

ABE ¼ 1

n

Xn

i¼1

ðPi � EiÞ=Ei ð28Þ

where E and P represent the experimentally measured and

predicted elemental compositions of the solid fuels, while

n is the number of sample data points used for the model

developments. The AAE estimates the degree of closeness

between the predicted and measured elemental composi-

tions, the ABE computes the degree of the bias of the

models’ errors. The smaller the absolute value of the AAE

Fig. 11 Strength of the input paramet

Table 5 Error analysis

Model C H O

MAE AAE ABE MAE AAE ABE MAE AAE ABE

Shen et al. (2010) 14.141 0.25 - 0.25 2.011 0.317 - 0.113 12.6 2.263 2.263

Parikh et al. (2007) 13.151 0.233 - 0.233 1.776 0.248 - 0.181 12.423 2.205 2.205

Nhuchhen (2016) 6.698 0.124 - 0.124 5.739 0.894 0.848 7.615 1.017 1.017

MLR 2.658 0.055 0.005 0.439 0.076 0.005 2.307 0.205 0.043

ANN 1.317 0.027 - 0.002 0.328 0.055 - 0.355 1.353 0.123 - 0.038

ANFIS 0.45 0.008 0.008 0.122 0.014 0.014 0.988 0.06 - 0.01
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is, the smaller the bias of the correlation while a positive

ABE value depicts that the average of the predicted value

of the elemental composition is more than the experi-

mentally measured one. Similarly, the MAE gives an

apparent amount of error in the same unit that the physical

quantity has. In addition, R2 indicates the degree of

goodness of the proposed correlations respectively (Shen

et al. 2010; Nhuchhen 2016). The models having the least

MAE and high R2 values were selected as the best models

for predicting the elemental compositions of solid fuels.

The error analysis performed in this study is as pre-

sented in Table 5. For the MAE error, the ANFIS model

has the least value for the carbon, hydrogen, and oxygen

while Shen et al. (2010) model has the highest. In the case

of AAE, ANFIS model also has the smallest values for all

the predicted elemental compositions which imply that

ANFIS prediction is closer to the experimental predictions

while Shen et al. (2010) model has the highest AAE in both

C and O and AAE of Nhuchhen (2016) model is the highest

in H. The ABE for both the ANFIS and MLR in the case of

C are positive while those of the remaining models are

negative indicating that ANFIS and MLR predictions are

slightly overestimated as the margin between ABE is very

close to zero. On the other hand, the ABE estimated for H

using the ANFIS, MLR, and Nhuchhen (2016) models are

positive while that of others is negative hence ANFIS,

MLR and Nhuchhen (2016) models slightly overestimate

the value of H but Nhuchhen (2016) model deviates more

from the experimental predictions. In addition, ABE for the

O shows that four of the models overestimate the oxygen

content of the fuels though the deviation of the MLR model

from the experimental model is very small while two of the

models slightly underestimate the oxygen content. It can be

inferred from the error analysis performed that the ANFIS

models have the least error follow by ANN and then MLR.

Similarly, Shen et al. (2010) model has the highest error

values follow by Parikh et al. (2007) model and then

Nhuchhen (2016) model. Hence, the performance of the

proposed models is promising.

4.3 Sensitivity analysis

Sensitivity analysis is a technique used to evaluate the

input parameters that most affect the output parameters.

Jong and Lee (2004) reported that the cosine amplitude

approach can be employed to evaluate sensitivity analysis.

The cosine amplitude method is as illustrated in Eq. (29).

rij ¼
Pn

i¼1 ðIi � OtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 I

2
i

Pn
i¼1 O

2
ti

p ð29Þ

where Ii and Otj represent the input and output parameters,

and n is the number of sample data points.

The cosine amplitude method has also been used by

various researchers in the field of geotechnical engineering.

For instance, Monjezi et al. (2012) studied the influence of

various parameters on the uniaxial compressive strength of

the rock. Momeni et al. (2014) determined the parameters

influencing the bearing capacity of stockpile using the

cosine amplitude approach. However, none of the existing

studies for predicting the elemental composition of solid

fuel conducted the sensitivity analysis using the CAM.

Hence, in this study, a sensitivity analysis was conducted

using the outputs from the three methods used and the

order of the importance of the independent variables is as

presented in Fig. 11. The results presented in Fig. 11 based

on the cosine amplitude approach in Eq. (29) show the

strength of the relation between the input and output

parameters for the three models developed. For the case of

C (Fig. 11a), FC content has the highest influence on it as

expected follow by VM. A and M contents have a similar

impact on C. On the other hand, VM has the highest

influence on both H and O (Figs. 11b and c) follow by M,

FC and then A contents for the three models proposed in

this study.

5 Conclusions

It is difficult to evaluate the elemental composition of coal

and biomass through laboratory tests as the test is time-

consuming and costly. As a result of the difficulty, the

elemental composition of coal and biomass cannot some-

times be obtained by laboratory tests, especially when

considering small to medium-size engineering projects. In

the first part of the study, in order to overcome this limi-

tation, prediction models were developed by using proxi-

mate and elemental analyses data obtained from the

laboratory tests, and ANFIS, ANN and MLR as the pre-

diction tools. The prediction models developed have strong

prediction capacities and can be used to estimate the ele-

mental composition of coal and biomass.

In the second part of the study, the developed prediction

models were compared with some existing empirical

equations for estimating the elemental composition of

similar materials. For all the parameters of elemental

composition (i.e. carbon, hydrogen, and oxygen) investi-

gated, the proposed models have a higher coefficient of

correlations than the existing models. In addition, error

analyses were performed to further compare the perfor-

mances of the proposed models with those of the existing

models in the literature using MAE, AAE, and ABE as

prediction error indicators. For the three elements of coal

and biomass investigated, the models developed in this

study have the smallest values of MAE, AAE, and ABE

except for carbon and hydrogen where there are
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overlapping of performances in ABE estimates. This shows

that using prediction models established in this study leads

to smaller errors compared to the existing models.

While comparing the ANFIS, ANN and MLR models

proposed in this study, it is obvious that the ANFIS models

have higher predictive capacities than the ANN models

and, lastly, are followed by the MLR models. This may be

mainly due to non-linearity between independent and

dependent variables. However, the performances of the

proposed models are satisfactory and they can be used for

practical purposes.
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