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Abstract There is a growing concern in mining community about the contribution of nano-particulates to miner’s health.

Despite the health influence of respirable dusts and associated lung diseases have been recognized for decades in the

mining industry, the nano-scale particulates accompanying with complicated physiochemical properties and their enor-

mous contribution in quantity have been drawing attentions only in recent a few years because of the advancement of nano-

science discipline. In this review, we examine the current regulations of dusts exposure and the dominant mass-based

monitoring methods to point out the ignorance of nano-particulates in mining industry. The recognized mining-related

nano-particulates sources are summarized to identify the mechanically generated finer particulates including particles and

aerosols. In addition, the mechanism of adverse health impact on miner with exposure to nano-scale particulates is

discussed in a detail to emphasize their substantial detriment as a potential respiratory hazard. Characterization of the

complex physiochemical properties of nano-particulates are then summarized and discussed because these properties could

be different from regular respirable dusts due to their dramatically increased surface area and particulate counts. The intent

of this review is to demonstrate the potential of adverse health effect of nano-particulate on the mine personals throughout

the mining cycle and to identify the research gaps of the mine nano-particulate characterization and quantification. We

suggest that further understanding of the mining induced nano-particulate properties and their pathogenesis are critical for

the future engineering control measure to mitigate the potential health threat for future miners.
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1 Introduction and background

Dust can be broadly defined as small solid particles

resulting from the breakage of solids. The adverse health

impact of dust exposure for miners during operation has

been recognized as a paramount issue in mining industry

since early 1900s (NIOSH 2019). Sufficient proofs have

been studied about their relationship with lung diseases

(Cohen et al. 2016; Blackley et al. 2018; Doney et al. 2019;

Moreno et al. 2019). When suspended in air, smaller air-

borne particles of dust can be a great risk to the miners’

respirable system. It has been proved that the smaller the

aerodynamic diameter of the inhaled dust particle, the more

likely it will be deposited more deeply in the respirable

tract (Prata 2018; Gasparotto et al. 2018; Gianoncelli et al.

2018; Entwistle et al. 2019; Graczyk and Riediker 2019). A

dramatic increase of the prevalence of progressive massive

fibrosis among working underground coal miners in central

Appalachia has been observed in the past decade although

stringent regulations have been proposed by MSHA and

NIOSH, as shown in Fig. 1 (Blackley et al. 2018; Doney

et al. 2019; Hall et al. 2019). The 2018 National Academic

of Sciences (NAS) report about mine dust explosion

indicted that changes in mining practices, conditions, and
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technologies during the past decades might have led the

changes of the typical dust-size distribution of both silica

and coal dusts, which could result in the changes of disease

epidemiology (Coal et al. 2018). Comprehensive investi-

gation of the new challenges related to dusts monitoring,

distribution and characterization were recommended.

Throughout the international communities, occupational

exposure limits (OELs) have been established to provide

the guidance on hazardous airborne contaminant concen-

trations that mine workers can be exposed to during their

working lifetime by various global organizations, including

United State National Institute for Occupational Safety and

Health (NIOSH 2011), Australia Queensland Government,

Organization for Economic Co-operation and Development

(OECD 2017), International Organization for Standard-

ization (ISO 2014) and several other institutions, organi-

zations and governmental agencies. In the mining industry,

there are two types of primary dusts during the extraction

and processing: respirable mine dust (RMD) and silica dust

(generally referring to the rock particle with quarts con-

centration of more than 5%). Specifically, for the coal

mining, the respirable mine dusts are termed as respirable

coal mine dusts (RCMDs). The different compositions in

coal dust as well as its byproducts (e.g. nitrogen dioxide,

sulphur dioxide, ash and soot) and waste are considered

serious exposure hazards for mine workers due to their

mobilization and bioaccumulation in human tissues and

toxic effect, which can induce DNA damage in different

organisms, indicating the need for biomonitoring (Kabata-

Pendias 2000; Menezes et al. 2013; Menezes et al. 2015).

Sufficient proofs have been studied about their relationship

with lung diseases.

The proposed and recommended OELs for mining

industry are listed in Table 1 by various mining countries.

The OELs of RCMD range from 1 mg/m3 to 6 mg/m3,

while OELs of silica dusts from 0.1 mg/m3 to 20 mg/m3.

These OELs are measured by a gravimetric sampling

method with airborne particles filter collection. Mass

concentration is used for these countries to assess the OELs

that they believe the workers can be exposed during a

certain time period at the low risk of adverse health effects.

It is commonly believed that dust size is critical for the

assessment of the adverse effect on human health. Only

dust particle with a smaller diameter can become

Fig. 1 Prevalence of progressive massive fibrosis among working underground coal miners from 1970 to 2020 in central Appalachia. Central

Appalachia includes Kentucky, Virginia, and West Virginia. Different colors in the map represent various coal mine districts from Mine Safety

and Health Administration (MSHA). The data are from the Coal Workers’ Health Surveillance Program, presenting as the 5-year moving average

percentage. (After Hall et al. 2019; Doney et al. 2019)
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suspended in the air stream for a long period of time which

pose a great risk to the respiratory system with continuous

inhaled. Particles ranging from * 60lm to *2000lm can

only reach heights up to approximately 3 feet above the

ground surface, while particles with a diameter less than

60lm can be suspended in air for long periods of time

(NIOSH 2019). Therefore, by quantifying the mass con-

centration of dust particles smaller than 60lm has been

widely applied in mining industry to assess the severity of

dust hazards to miners’ health with a strong assumption

that dust particles with various diameters cause a same risk

of adverse health effects on workers. In fact, it is a really

wide sized range for the dusts less than 60lm, and the size-

dependent health effect should be paid more attention for

future characterization and pathogenesis of dusts on min-

ers’ respirable system.

In recent years, nano-dust and their aggregates or

agglomerates (NOAA) have obtained significant attention

Table 1 Dust and DPM exposure monitoring and sampling approaches (by countries) (Bocskor et al. 2017)

Country Total production

in 2015

Underground mining Dust/DPM exposure limits Required

monitoring

devices

Sampling

methods

Rank Thousand

short tons

Est.

percent of

total

production

(%)

Typical

method

People’s

Republic

of China

1 4,376,984 90 Longwall Depending on a silica content ranging from

5% to 50%, exposure limits are between 6

and 1 mg/m3 for RCMD and between 20

and 2 mg/m3 for total coal mine dust

Personal

gravimetric

sampler

Gravimetric

method

United

States

2 896,941 34 Room-

and-

pillar,

longwall

RCMD exposure limit is 1.5 mg/m3. Quartz

exposure limit is 0.10 mg/m3. DPM

exposure limit: 0.16 mg/m3 (measured as

TC)

Personal

gravimetric

sampler

Gravimetric

method

India 3 643,720 10 Room-

and-

pillar,

longwall

RCMD exposure limit is 2 mg/m3, when the

silica content is less than 5%. When the

silica concentration is 5% or more, the

exposure limit is calculated as 10 divided

by the percent silica content in the RCMD

Monitoring

device

approved by

the Indian

government

Gravimetric

method

Australia 4 560,714 20 Longwall New South Wales: Exposure limits is 1.5 mg/

m3 (effective on Feb 1, 2021) for RCMD,

0.05 mg/m3 for quartz, and 0.1 mg/m3

(effective on Feb 1, 2021) for DPM

Personal

gravimetric

sampler

Gravimetric

method

Queensland: Exposure limits is 3 mg/m3 for

RCMD with a quartz content less than 5%,

10 mg/m3 for the inhalable fraction, and

0.10 mg/m3 for quartz

Personal

gravimetric

sampler

Gravimetric

method

Republic of

South

Africa

7 256,876 50 Room-

and-

pillar,

some

longwall

Exposure limit is 2 mg/m3 for RCMD with a

quartz content less than 5%. If the quartz

content is greater than 5%, an exposure

limit for quartz is 0.1 mg/m3

Personal

gravimetric

sampler

Gravimetric

method

Germany 8 203,613 3 Longwall Limiting cumulative exposure for a 2-year,

220-shift exposure would be an estimated

dose accumulated from an average

exposure of 4.0 mg/m3. DPM exposure

limit: 0.1 mg/m3 for general surface

working place and 0.3 mg/m3 for

underground non-coal mines

Area gravimetric

sampler

Gravimetric

method

Does based

method

Poland 9 149,147 53 Longwall Exposure limits is 1 mg/m3 for RCMD

containing free crystalline silica from 2 to

50%, 4 mg/m3 for total dust

Personal

gravimetric

sampler

Gravimetric

method
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due to their potential influence on health in work envi-

ronment. The studies have indicated that nano-scale parti-

cles pose a higher risk of human health due to their specific

characterizations, such as highly developed surface area

per unit weight or volume, which may cause a larger lung

deposited surface area (LDSA) with a different toxicology

compared to the same mass concentration of dust with

relatively large size (Arias-Andres et al. 2018; Johnson

et al. 2019; Zhao et al. 2019). The definition of the

nanoscale, given by International Organization for Stan-

dardization (ISO) and European Committee for Standard-

ization (CEN), is a size range from approximately 1 to

100 nm (Definition of a nanomaterial) (Commission 2017).

A related term, ultrafine particles (UFPs) was also intro-

duced in 2013 Health Eating Index (HEI), referring the

fraction of ambient particulate matter (PM0:1), containing

airborne particles of nanoscale size with a diameter less

than 0.1 lm. At the active mine extraction sites or the

processing plants, the continuously coal/rock cutting and

breakage can produce a wide range of dust particles

including nano-sized dusts (Sarver 2018). These nano-

sized dusts existing in mining environment throw into a

question that the current OELs in assessing dust hazard

using a mass concentration instead of a number concen-

tration. Because the total mass of the nanoparticles con-

tained in the aerosol may constitute only its percentage, but

their number can reach over 80% of the total particles

(Oberbek 2019). A better understanding of the formation,

transformation, and adverse health impacts of nano-scale

dusts would contribute to the protection of miners’ health

and future regulation formulation.

This review tries to summarize the state of knowledge

on the evidence of nano-dust hazards in mining industry

and their fate and effects in organisms after inhalation by

discussing existing literatures regarding nano-dust charac-

terization. Five sections address exposure, health effects,

and characterizations in the following order: (1) current

regulations; (2) health impacts of nano-scale dusts; (3)

Mining related nano-dust sources; (4) surface characteri-

zation and size distribution; and (5) coating effect with

DPM.

2 Potential sources throughout the mining cycles
and the nano-dust fraction

2.1 Potential dust sources for the completed mining

cycle

In mining operations, no matter surface or underground

mining (Fan and Liu 2019a, b), dust is generated in obvious

ways. Anytime an operation is cutting, blasting, trans-

porting, refining, or processing a dry material, there is a

great likelihood that dusts can be generated (Fan and Liu

2017; NIOSH 2019; Zhao et al. 2020). The dust generated

will easily be liberated into the confined working envi-

ronment, forming a dust cloud if its concentration is high

and with proper sizes. This type of dust cloud, obviously, is

a great health threat to mining operation personnel. In

addition, high dust levels can impede visibility and thus

directly affect the safety of workers. In most cases, how-

ever, exposure to dust clouds can be prevented through

administrative controls (such as increasing waiting time

before getting access to the operational regions) and

engineering controls (such as suppression and prevention

from water sprays), because large-size particulates

(60–2000 lm) only can suspend in the air for a very short

time before settling down on the ground according to EPA

(1996). Therefore, these dusts generally have been miti-

gated before interacting with workers. Particulates with

size less than 60 lm can suspend in the air for a long time

before creeping down. It is expected that the smaller the

dust size is, the longer suspending time for the corre-

sponding dusts. Therefore, nano-dusts can easily suspend

in the air for hours and be transmitted to locations far away

from its original sources. The possible mining related nano-

dust sources are summarized in Fig. 2. Proofs of existence

of nano-dusts in mining related operations have been

reported.

Drilling and blasting are the two primary mining oper-

ations involving displacement of air around the operational

regions. Both are notorious sources of nano-dusts with the

fragmentation of the rocks. Surface mine drilling is

accomplished using both rotary and percussion drilling

methods. In particular, dry drilling achieves penetration

through rock and cleanness of cuttings using pneumatic

power. Fines particulates will be delivered to the air around

the drill holes and become a risk of dust exposure. Gen-

erally, wet drilling by using moisture air and installing

shroud around the drill are the primary dust control

methods applied in fields. However, the water suppression

effect with nano-sized particulate and the leakage between

the shroud and complicated working surfaces are still

skeptical by researchers (Zimmer et al. 1987; Organiscak

and Page 2005). Droplet size is critical in dust suppression.

Only with the size similar to the size of nano-particulate,

the water spray system can be applied with a high effi-

ciency. There are two difficulties for the water suppression

of nano-particulates: the formation of nano-scale droplets

and the polydisperse of size distribution. While blasting

seemingly generates large amount of dust, the operation

occurs infrequently enough that it is not considered to be a

significant contributor to particulate less than 10 lm

(Muleski 1991; Richards and Brozell 2001). The investi-

gation of the dust size distribution for both soot and min-

erals with primary blasting in limestone quarries well
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demonstrated the existence of nano-scale dusts (Jones et al.

2003). The image analysis-based quantity percentage is

shown in Fig. 3. Although underground blasting is con-

fined in an enclosed environment, setting off the blast in

underground operations generally occurs off-shift when

miners are evacuated, and ventilation is used to clear the

mine for hours. There is less likelihood for dusts accu-

mulation under this circumstance, but secondary dust

sources should be paid more attentions, such as the fol-

lowing loading and hauling operations. In addition, mineral

Fig. 2 Mining related nano-dust sources

Fig. 3 Size distributions of soot and minerals from quarry a and Morgantown b samples. Ten random, low-resolution, images were taken of each

filter, and all particles on these images measured by image analysis. The peak seen at 2.0 is an artefact of changing the histogram bins from

0.2 mm to 2.0 mm at this point on the axis (Jones et al. 2003)
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processing on surfaces with pneumatic powers (e.g. bag

filling) can also be the potential nano-dust sources because

of the continuous air blowing around dust sources. The root

causes for the airborne dusts with these processes are that

small particles of insufficient weight are picked up by

excessive air currents. Generally, dust collection system

should be properly designed, and PPEs are suggested for

workers within these processes to reduce inhaled respirable

dusts.

Mining processes such as cutting, crushing, mucking,

hauling and so on are primarily related to the breakup and

transport of rock blocks, where new dusts formed due to

mechanical forces or existing dusts become airborne due to

disturbances. The mechanical breakup forms dusts due to

the inherent nature of size-reduction and segregation pro-

cesses. Relative dust emission rates are different from

different mineral processing equipment. The general prin-

ciple summarized, as one would expect, is that emissions

increase as the size of the material processed decreases. It

is recommended that the readers can refer EPA-estimated

particulate emissions for crushed stone operations for more

data. Worker exposure may be managed through engi-

neering controls to coat, suppress, or enclose the dust

sources, or by isolating the worker from the dust sources.

However, it was evident that the improvement in cab col-

lection efficiency is limited for nano-scale dusts and more

protection should be focused on the nano-scale dusts.

Figure 4 demonstrates the limited cab collection efficiency

for nano-scale dusts as marked in red. Also, the protection

factor (the average outside respirable dust concentration

divided by the inside cab dust concentration) is high for the

nano-scale dusts as measured by GRIMM Particle monitors

(Gresh et al. 1994). The potential second dust sources

during loading and hauling of ‘‘mucks’’ can liberate

existing dusts, which have been attached on the surface of

broken rocks, via using LHD (load-haul-dump) vehicles

and muckers. Local ventilation and water applications to

the muck pile are the primary means of dust control. But

for different types of rocks, the dust control effectiveness

varies. For example, water suppression cannot be effi-

ciently applied in coal mines due to its hydrophobic nature.

Different types and application ratios of additives have

Fig. 4 High protection factors and limited improvement in cab collection efficiency for nano-dusts (After Cecala et al. 1994)
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been studied for suppression and prevention of hydropho-

bic dusts (Blazek 2003; Organiscak 2013). Details about of

this is beyond the scale of this review.

Different types of conveyors can be used in mines for

transporting materials, from raw unprocessed ore to fully

processed products. A conveyor and its transfer points are

well known to generate significant amount of respirable

dusts. Fugitive emission is the most common dust source

related to material transportation with a conveyor belt.

Spillage results from uncontained or improperly loaded

material, and carryback comes from materials falling to

discharge from the belt as it is transferred or discharged

from the conveyor belt, can become airborne via interact-

ing with the ventilation airflow currents (NIOSH 2019).

Proper design and selection of the conveyor equipment

accompanying with the enclosed system by considering the

transfer distance, property of materials to be transferred,

can effectively control the dusts emission towards the

working environment. In addition, more attentions should

be put on the transfer points, where sufficient airborne

dusts can be generated due to the air induction resulting

from the materials falling through air, which imparts

momentum to the surrounding air. Due to this energy

transfer, a stream of air always travels with the falling

material and the excessive airflow can pick up the dusts of

insufficient weight and make it suspend in air for a long

time. The same mechanism of dusts generation in the

storage bin, bucket elevator, and other processes where

material falling occurs. Combination use of water preven-

tion and suppression systems before, during and after the

transfer point is critical to reduce airborne dusts during

these processes.

Open areas with exposed product are another dust

source in mining process and around surface plants.

Stockpiles are the most common region generating dust

cloud in a large scale during the material loading, moving

and unloading from the stockpiles. Wind fence is normally

installed to prevent the dust emission and transmission and

contain the operation in a relatively enclosed region. Haul

road dust emission control is a significant issue at surface

sites as well due to the fugitive dust. It is proved that the

dust contribution from the haul truck is 78%–97% of total

respirable dusts at surface site, which is highly possible to

cause overexposure of mine personnel (Cole and Zapert

1995; Amponsah-Dacosta and Annegam 1998; Reed et al.

2001). Rather than a fixed dust source, the mobile vehicles

is a moving dust source, which may have an influence with

a large scale. Another concern for the dust source from

open areas is the unpredicted wind direction and flowrate,

which may have a dominant control on the dust emission

and its plume. Therefore, the speed control of haul trucks

itself should be considered for dust control. Material wet-

ting is also applied to maintain the respirable dusts stick on

the ore surfaces and prevent it becoming airborne.

The size distribution could be dramatically different

from the mining-related dust sources due to the different

break-up mechanisms of rock during the operation (Smith

1986; Jiang et al. 2016; Yang et al. 2020). Although, with

current studies, it keeps largely unknown of the nano-scale

fraction of dusts formed in various mining cycles and

operations, adamant evidences have shown that the nano-

scale dusts can exist in all of these operations, and the

number fraction of nano-scale dusts could possess absolute

advantage in the total number quantity. The size distribu-

tion of samples of mine dust from 50 coal mines in the 10

MSHA bituminous districts shown that the average weight

contribution of dusts under 200 mesh (\ 75 lm) could be

30 � 5ð Þ %, and the nano-scale dusts among them are

believed to have a dominant quantity contribution (Cash-

dollar 1996; Sapko et al. 2007). An investigation of total

Fig. 5 Size distribution of drilling-induced dusts in the lab with different drilling operations (after Yang et al. 2020)
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suspended particulates in an India surface coal mine

revealed that the weight percentages lying within different

size ranges were a function of mining activity. The finer

dusts would suspend in the air for a longer time and being

transported to a further distance. Particle size analysis by

Cascade Impactor indicated that at two monitored stations

the size range 0–2 lm had a weight percentage as high as

of 48.2% and 54.5% (Ghose and Majee 2007). An example

shown in Fig. 5 is the dust size distribution versus volume

with various drilling operations measured in the lab by

Yang et al. (2020). Different curves represent different

drilling operation with various rotation speeds and pene-

tration rates as listed in the table. Two obvious volume

peaks occurred for the majority curves, indicating the large

volume of dusts with large-scale size of * 100 lm and

small-scale size of * 500 nm. It is easy to convert this

volume percentage to number percentage by assuming the

dust shape as a sphere. The number counts of small-scale

dusts could be 6 magnitudes larger than that of the large-

scale dusts. Similar results were also observed in Fig. 7,

which sample was collected from an underground mine.

The big fraction of the small-scale dusts should be paid

more attentions while characterizing the health effects of

mining-related dusts rather than only focus on the mass

concentration, which is primarily dominant by the large-

scale dusts in mining industry.

Item Z1 Z2 Z3 Z4 Z5

Rotation (r/min) 600 900 1250 1750 2600

Item T1 T2 T3 T4 T5

Penetration (mm/s) 0.75 0.85 1.0 1.2 1.5

2.2 Nano-dust fraction and surface characterization

Numerous factors influence miners’ health of exposure to

mining-inducted nano-dust. The hazard posed by inhaled

nano-dusts in mining industry depends on their abundance

and particle sizes, properties such as chemical composition,

solubility, shape, and surface area, which all play a role in

the associated health effects, as shown in Fig. 6 (Entwistle

et al. 2019; Liu and Liu 2020). Surface area of particles can

exponentially increase with the decreasing particle size,

reflecting the increased physical and chemical activities of

nano-particles (Fig. 6b). A schematic represent of a typical

dust size distribution of the number concentration, surface

area concentration, and mass concentration in underground

mines is shown in Fig. 7, indicating that although nano-

particulates contribute a micro fraction of the total mass,

their number contribution is significant. Small-scale par-

ticulates could suspend in the working environment for a

longer time and transmit to a further location with direc-

tional airflow in underground. Therefore, these small-scale

particulates are highly likely to be inhaled by miners. Dust

exposure can span a wide range of particles sizes in mining

industry with health effects depending upon the region of

deposition in the lung. For this reason, the size distribution

of dusts existing in the working environment should be

evaluated. Three dust fractions are defined, namely inhal-

able, thoracic and respirable fractions. There has been

international agreement that OELs for dusts should nor-

mally be specified as one of the above fractions. The

relationship between dust size and its deposition are given

by ACGIH in 1999 (Table 2), indicating that the nano-scale

dusts are completely respirable and can be fully deposited

in the lung or transport into bloodstream.

Fig. 6 a Physicochemical properties of nanoparticles. b With the decreasing particle size below 100 nm the surface molecules exponentially

increases (Oberdörster et al. 2005; Čokić 2018)
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With above discussion, a fully characterization of the

size less than 1 micro should be focuses on for mining

resulted dusts. We can acknowledge the value of mass

centration as shown in green curve in Fig. 7, but the

pathogenesis study will be benefit much more from the red

and blue curves. Establishment of the relation of mass to

number and surface area through characterization would be

the key to better understand the potential transmission and

pathogenesis mechanisms by inhalation of nano-scale

dusts.

Numerous techniques have been applied to characterize

the dust size distribution, shape and chemical compositions

such as SEM–EDX, TEM–EDX, XRD (X-ray Diffraction),

DLS (Dynamic Light Scattering), SAXS (Small-angle

X-ray Scattering), AFM (Atomic Force Microscopy), FTIR

(Infrared Spectroscopy and Atomic Force Macroscopy),

etc. Both SEM–EDX and TEM–EDX are equipped with

energy dispersion X-ray, allowing the analysis of the

mineral composition. They are well established for chem-

ical identification of particles (Kasahara et al. 1993; Kas-

parian et al. 1998; Carpenter et al. 2002; Deboudt et al.

2010; Cvetković et al. 2012) and determination of size and

shape parameters (Kasparian et al. 1998; Wang and Luo

2009). They have been specifically applied to investigate

mine dust mineralogy and particle size (Denee 1972; White

and DeNee 1972; Huggins and Meyers 1986). Detailed

guidance on the use of SEM–EDX for analysis of

Fig. 7 Particle-size distribution of nano dusts and their transmission distance (After Kwon et al. 2020). dN/dLog Dp, particle number per cubic

millimeter; dS/dLog Dp, particle surface area per cubic millimeter; and dM/dLog Dp, particle mass per cubic millimeter, respectively

Table 2 Demonstration of particulates deposition fraction with size

(after ACGIH 1999)

Aerodynamic

diameter (lm)

Inhalable

fraction (%)

Thoracic

fraction (%)

Respirable

fraction (%)

0 100 100 100

1 97 – 97

2 94 94 91

3 – – 74

4 – 89 50

5 87 – 30

6 – 80.5 17

7 – – 9

8 – 67 5

9 – – –

10 77 50 1
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particulate samples is proposed by the US EPA (Environ-

mental Protection Agency) (De 2004). SAXS is an

uncomplicated bulk nanostructural quantification tech-

nique, particularly sensitive to the smaller end of the

nanoscale. It has been reported that the results from SAXS

have repeatedly been demonstrated to agree well with

findings from electron microscopy. A round robin experi-

ment for inter-laboratory comparison of SAXS results was

conducted by Brian et al. (2017). To assess the practical

precision and accuracy, indicating that SAXS is a suit-

able method for revealing particle size distribution in the

sub -20 nm region (at minimum). Dynamic light scatter-

ing is a technique tool to diagnose particle size distribution

in solution or colloidal suspensions, where the photon

correlation spectroscopy (PCS) was applied to calculate the

autocorrelation function and deduce the particle size

information. Similar technique such as real-time cloud and

aerosol spectrometer (CAS) light-scattering measurements

was also applied to characterize the dust cloud using a

light-scattering theory for irregular particles- ray tracing

with diffraction on facets (RTDF) (Hesse et al. 2009),

which is considering diffraction at facet in addition to

diffraction at the projected cross section applied in

dynamic light scattering, and therefore describes the size-

dependence better (Barone et al. 2017). The surface

topography and chemical property such as functional

groups can be assessed through AFM and FTIR. AFM is

powerful tool to investigate the three-dimension surface

tomography, friction (Fujihira and Morita 1994; Frisbie

and Rozsnyai 1994), magnetism (Martin and Wickramas-

inghe 1987; DiCarlo and Scheinfein 1992), surface charge

(Sugawara et al. 1994; Yoo et al. 1997), rigidity (Maivald

et al. 1991; Persch et al. 1993) and capacitance (Neubauer

et al. 1996) by moving a tiny probe contacting with the

particle surface. FTIR is unique among all the chemical

characterization techniques because it is nondestructive

and capable of identifying the molecular level chemistry

through the identification of the vibrational signatures

related to specific types of chemical bonds (Painter et al.

1981; Liu et al. 2016). In addition, and providing important

information on molecular structure, especially the chemical

functional groups of organic compounds coated on the

particle surfaces.

3 Mechanisms of health impacts of nano-dusts

After recognizing that the size and particle counts are

critical for the characterization of the nano-particulates, we

would like to review the influence of these factors on the

transmission, deposition and interaction with organ tissues

of nano-particulates. Despite occupational improvements

within the mining industry, mine dusts, and associated

potential toxic elements (PTEs) generating in mining

activities, is one such hazard related cause of adverse

health effects on mine workers. Understanding the expo-

sure pathways is critical, as is the source, transport path-

way, nature of exposure (e.g. duration, activity) and

exposure route (i.e. by inhalation, ingestion or der-

mal/topical adsorption) (Entwistle et al. 2019). Rather than

the well-known health effects of accumulated respirable

dusts in human lungs, such as diseases of coal worker

pneumoconiosis (black lungs), silicosis, chronic obstruc-

tive pulmonary diseases, etc., with an accumulative dust

mass concentration only in lungs, nano-dusts may have

more complicated mechanisms of adverse health effects on

human health with its specific characterizations in a ultra-

small scale. A better understanding of the mechanisms that

lead to adverse health impacts, toxicity, and evolving

biomonitoring of nano-dusts in mining community are

pivotal for future understanding of the pathogenesis of the

dust on the human lung.

The mechanisms, the efficiency and the pattern of dust

deposition in the lung is known to be determined by the

aerodynamics and thermodynamics of dust particles from a

physical perspective. Apparently, the nano-sized particles

can behave in a more complex way as inhaled. Figure 8

demonstrates the fractional deposition of inhaled particles.

The particulates of 10–100 nm are primarily deposited in

the alveolar region where the gas exchange occurs. Rather

than only interact with lung cells, nano-sized dusts are of

particular concern as they may translocate and be trans-

ported by mechanism such as macrophage-mediated

clearance (Kreyling 1990; Kreyling et al. 2012), intersti-

tial-lymphatic clearance (Semmler-Behnke et al. 2014) and

the blood circulation (Kreyling et al. 2017; Graczyk and

Riediker 2019) to distance sites and organs. The predom-

inant mechanism for dust clearance from peripheral lungs

is uptake by lung surface macrophages and transport to the

larynx. Varying amounts of circulated nano-dusts in human

body can be excreted quickly by different routes, usually

through the liver, kidney or gastrointestinal tract, and

sometimes in sweat, skin cells and hair loss (Baker 2012).

However, the deposited nano-dusts can be a potential

hazard for human health. Therefore, a much broader list of

human diseases can be influenced by inhaled nano-dusts,

including cardiovascular, respiratory, liver, neurological,

gastro-intestinal, kidney and mental health (Stewart and

Hursthouse 2018). In addition, mining-induced dusts can

be troublesome on impact with the skin and eyes. Under

certain conditions in certain mine locations considerable

irritation due to the facial impaction of coarse particles has

been reported (Gibson and Vincent 1980; Sun et al. 2007).

However, few studies have investigated the impacts of

nano-scale dusts. The limited researches conducted in the

lab indicates that the small-scale coal dust explore plays an
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important role in the development of dry eyes, that were

attributed not only to the mechanical injury of coal dust but

also its toxicity, which induced the development of

xerophthalmia (Sun et al. 2007; 2009). More studies should

be conducted focusing on the skin and eyes impact due to

nano-scale dusts in the industry working environment.

One noteworthy property of nano-dusts causing atten-

tion is their high toxicity and their capacity to bioaccu-

mulate. The continuous inhalation of nano-dusts in the

working environment with high dust concentration is haz-

ardous and a silent risk factor to a healthy worker that may

lead to oxidative stress, oxidative damage, acute pro-in-

flammatory response and damage to macromolecules such

as lipids (lipid peroxidation), proteins, carbohydrates and

nucleic acids (DNA) (Schins and Borm 1999; Silva 2016;

León-Mejia et al. 2018). In addition to the well-known lung

diseases, liver is reported as a vulnerable target organ since

the translocated nano-dust can easily reach micro live

vasculature and hepatocytes through bloodstream (Mani

2007; Bourdon et al. 2012; Kim et al. 2014). Biomonitoring

tests in the lab demonstrated that Obese rats are more

vulnerable to coal-dust inhalation induced adverse health

effects, which may induce organ specific pathologies or

even aggravate existing diseases where obesity is present

(Gasparotto et al. 2018). One group of lung and liver his-

tology comparison with coal dust inhalation has been

summarized in Fig. 9, indicating the adverse influence of

nano-scale dusts on organ cells. Accumulating evidences

suggested that inhaled nano-dusts have a considerable

impact on health and disease of the CNS (Central Nervous

System) (Block et al. 2012). It is reported that nanoparti-

cles can accumulate in the nasal regions, where they are

Fig. 8 Predicted fractional deposition of inhaled particles in the nasopharyngeal, tracheobronchial and alveolar region of the human respiratory

tract during nose breathing. Based on the data from the international Commission on Radiological Protection (Smith 1994; Čokić 2018)

Fig. 9 Lung and liver histology images and oxidative damage. Representative images of a Control (lung), b Coal dust inhalation (CDI) (lung),

c Control (liver), d CDI (liver). The liver histologic investigation showed the accumulation of triglycerides in hepatocytes indicating an

accentuated hepatic microvesicular steatosis. Animal exposed to CDI gad alterations in their lung structures, where the tissue showed very thin

cell layers and severe distensibility. (After Juciano Gasparotto et al. 2018)
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then transported along sensory axons of the olfactory nerve

directly to the CNS (Oberdörster et al. 2005; Oberdörster

and Elder 2009). Dust exposure has also been associated

with autism, attention deficit/hyperactivity disorders and

neurodegenerative diseases—although evidence of causa-

tion has not been established (Kioumourtzoglou et al. 2015;

Casanova et al. 2016; Heusinkveld et al. 2016; Cacciottolo

et al. 2017; Liu and Liu 2020).

The toxicity mechanisms are clearly related to chemical

and physical compositions of nano-dusts and molecular

mechanisms driving the body defense or possible related

diseases. The micro particles inside the tissues may

undergo complex metabolic transformations and the sur-

face properties can be modified by removal and deposition

of chemical elements, metals and salts, or by adsorption of

macro-molecules such as proteins (Gianoncelli et al. 2018).

Numerical studies of particle characterizations has been

reported from different part of the world, as discussed in

Sect. 2. However, a very few sparse tests have been

reported related to lung tissue chemical analysis by using

different technologies, including PIXE (particular-induced

X-ray emission), SEM (Scanning Electron Microscopy),

TEM-EDS (Transmission Electron Microscopy – Energy

Dispersive X-ray Spectroscopy), l FTIR (Fourier Trans-

form Infra-Red), SR-l XRF (Synchrotron Radiation XRF).

The application of PIXE was firstly reported in 1981 by

Robaye et al. involving multiple procedures involving

freeze-drying (Pascolo et al. 2015), low temperature ashing

and dissolution that completely destroys the tissues itself.

Then it is improved by Annegarn et al. and widely used in

biomonitoring region for dust induced adverse health

effects (Annegarn et al. 1988; Ogasawara et al. 2011;

Chino et al. 2015; He et al. 2017). It is believed that SEM

and TEM have a higher spatial resolution for this purpose,

however, they are more feasible for dust characterization

because the lower detection sensitivity that limit the

information can be obtained from the tissues. Another

reason why SRF is proposed for tissue chemical analysis is

the relatively easy sample preparation and single particle

can be discriminated in the heterogeneous aggregates.

Recently, Alessandra et al. applied SR-l XRF spectromi-

croscopy to track the dust inside histological samples of

lung tissue and investigate the chemical nature at

nanometer spatial resolution. They found XRF can quantify

important elements in nano-deposits providing information

on the presence of highly toxic material. Using the same

technique, Zhang et al. found that the bioavailable iron

contained in coal can induce an increment of ferritin in the

cells and stimulate lipoperoxidation via free radical pro-

duction and eventually induce cell death (Ackerman et al.

1999). Similar results obtained by McCunney et al. sug-

gested that the main active compound of coal inducing

pneumoconiosis is iron (McCunney et al. 2009). Another

advanced imaging technique widely applied is micro

Fourier Transform Infra-Red (l FTIR) spectroscopy. Bas-

ing on the adsorption of IR radiation by molecules and

molecular groups at specific frequency, l FTIR approaches

are sensitive, label-free and non-damaging analytical tools

for the characterization of biomolecules, revealing the

vibrational pattern of the investigated samples (Pascolo

et al. 2015). The well-known IR adsorption profile of

fundamental components of biological tissues such as

protein, nucleic, carbohydrates etc. also benefits the

application of this technique. The demonstration of results

acquired from different techniques are shown in Table 3.

Although various techniques can be applied to quantify

the surface composition of nano-scale dusts. Attention to

details is required while selecting the proper techniques to

quantify the surface toxicity. For instance, both SEM and

TEM-EDS are adequate for particulate analysis with

specific surface elementals attachment, while lXRF and

lFTIR can be applied to map the elemental distribution in

tissues. Therefore, choosing the proper technique is vital

for acquiring accurate surface toxicity of nano-particulates.

4 Coating effect of nano-particulates with DPM
and surface charge

In mining industry, the materials, in general, have been

weathered and subjected to a wide range of environmental

conditions that have modified the original ore and gangue

materials. In such contexts, the dusts generated are poten-

tially different in their reactivity and hazard from the

originally mined sources. Nano-particulates released into

the working environment are highly likely to interact with

other pollutants, which is also being released in the same

environment. An important aspect of nanotoxicity is the

modification of physiochemical characteristics of nano-

particulates’ surface functionary by coating, aggregating,

chemical transforming and more (Lee et al. 2014). Parallels

can be drawn with the coal mining industry where changes

in specific dust characteristics have been invoked to

explain resurgence in diseases such as black lung in the

Appalachians (Arnold 2016). As demonstrated in Fig. 10,

the nano-particulate or aerosol generally formed by an

elemental carbon/silica core accompanying with very

complicated surface coatings, including organic carbons

species, adsorbed soluble and vaporous hydrocarbons,

hydrated sulphates and nitrates, reactive metals and more

(Stone et al. 2017).

DPMs (diesel particulate matters) released from diesel

powered equipment in underground mining has been

identified as a hazard in the past decades. An improved

understanding of the physiochemical property change—the

interactions between combustion induced aerosols and
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mechanical generated particulates in complexed under-

ground conditions—would be a substantial contribution to

prevent miners from exposing to such hazards.

The formation and transformation of DPMs normally

includes several stages: combustion, cooling-dispersion-

dilution, and particle growth, accompanying with three

modes of particulates—nucleation, accumulation and

coarse modes—as shown in Fig. 11. Diesel aerosols are, in

general, one order of magnitude smaller than other res-

pirable particulates generated in mines through mechanical

processes. Their sizes range from nm to lm. Most of the

diesel aerosols behavior similar to the gaseous components

in underground with a long residence time in the ventila-

tion air. However, the particulates of nucleation mode (less

than 0.1 lm), the primary components of which is ele-

mental carbon produced due to incomplete combustion,

would be rapidly deposited by Brownian diffusion. These

particulates are readily to collide with adjacent particulate

to coagulate into large particulates. While particulates go to

the region of tailpipe with lower temperature and pressure,

they continuously grow due to condensation and coagula-

tion with other semivolatile or volatile organic compounds.

The coagulation and evaporation process rapidly diminishe

the particulate number of the nucleation mode. With the

aging of emitted particulates in air, the particle growth

continues via chemical reaction and physical adsorption,

and consequently form particulates of accumulate and

coarse modes. While the size is larger than 1 lm, the

sedimentation is dominant, and the corresponding resi-

dence time shortens. It is reported that particulates between

30 nm to 1 lm tend to have longer atmospheric lifetime

because they are less likely to be deposited in either way as

shown in Fig. 11 (Kwon et al. 2020).

In addition, the electrical forces a charged airborne dust

particle can experience may be of considerable practical

importance to lung deposition after inhalation and toxicity

alternation. Dust particles could carry varying electric

charges after pulverization depending on the characteristics

of individual mines. The factors affecting the sign and

magnitude of charges on coal dust particles include mois-

ture content, ambient humidity, dust components (e.g.,

mineral level, sulfate level), process method, and particle

size (Johnston et al. 1985; Page 2000; Tessum and Raynor

2017). It is reported that the respirable particles can carry

on the order of 102–106 charges per particle that could

cause a different dispersion patten in air after it is gener-

ated. Most importantly, the surface charge may alternate

the surface chemical characteristics through the complex

interaction with DPMs in the air that could increase its

toxicity. Previous studies demonstrated that the negatively

charged dusts would react strongly with scavenger recep-

tors on alveolar macrophages and would activate the gen-

eration of reactive oxygen species (ROS) and inflammatory

cytokines (Lapp and Castranova 1993; Castranova 1998;

Jardin and Wallaert 2012). Since the nano particles tend to

deposit more and deeper in the lung, future studies should

be conducted focusing on investigating the deposition

mechanism of highly-charged nano-dusts and its interac-

tion with lung fluids.

Despite the intensive toxicity by interacting with nano-

dusts, DPM itself, as another primary contaminant with

nano-scale size in underground, especially in metal, non-

metal mines, can cause a severe concern due to its adverse

health effects on human body. A substantial body of

research addressing the adverse health effect of the DPM

and the underlying toxicological mechanisms have been

studied, indicating that the long-term or short-term expo-

sure in the environment with high DPM concentration,

such as in underground, is responsible for causing respi-

ratory mortality and morbidity (Donaldson 2005; Pope and

Dockery 2006; Ayres et al. 2008).

A high number of animal studies starting from 1950s

have been carried out to demonstrate that the long-term and

short-term exposure to high-concentration DMP concen-

trations contributes to the increasing risk of lung tumour

(Chang and Xu 2017). As the concentration of DPM is

larger than 2.5 mg/m3, all animal studies except for one

study have shown a lung tumour response in rats, indicat-

ing its positive relationship with DPM exposure (Heinrich

et al. 1986). However, Ping et al. summarized in a review

paper that although sufficient evidences have been col-

lected in rats test, none of the hamster studies showed the

same increasing trend as rats in the risk of lung tumours

and only one study involved monkeys, but no lung tumours

were found in monkeys after long-term DPM exposure

(Chang and Xu 2017). Therefore, it is suggested that more

studies should be carried out focusing on the cohort and

occupational studies relevant to the potential carcino-

genicity of DPM on human bodies. Some epidemiological

Fig. 10 Complex composition of nano-particulates and coating

effects (After Stone et al. 2017)
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studies for different job titles have been reported by IARC

providing a strong evidence that the DPM exposure could

increase the risk of lung tumour for human beings (IARC

2013). The systematic studies of the adverse health effect

on coal miners with respect to DPM exposure was reported

by NIOSH in 1986 with the title of ‘‘Evaluation of the

potential health effects of occupational exposure to diesel

exhaust in under-ground coal mines’’, demonstrating a

Fig. 11 Demonstration of formation and transformation of DPMs and its residence time in the air (After Kwon et al. 2020)
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strong association between lung cancer and exposure to

DPM. Similar study was carried out at 8 U.S. non-metal

mines to evaluate the potential influence of DPM exposure

on the lung health of 12,315 miners (Attfield et al. 2013).

Positive correlation between lung tumour and DPM expo-

sure time was also revealed in this study since the DPM

level is generally higher in underground than other indus-

tries. Although few studies have been carried out in

underground, strong evidences have been found to

demonstrate the adverse health effect of DPM exposure.

Since the generation source and the mechanism of adverse

health effect could be different for DPM compared to nano-

scale dusts, more studies should be carried out to further

unveil the pathological mechanism and the potential con-

trol methodologies for DPM exposure in underground.

5 Summary, research gaps and recommendations

Despite nano-particulates are massless and weightless and

may invisible in mining environment, their considerable

number quantity and dramatically surface area are pivotal

to their toxicity and adverse impact on health after being

deposited in miners’ respiratory tract and transmitted to

circulation system. Further studies will be required to

answer a few different questions: (1) nano-scale dusts

generation sources and rates; (2) their transport and depo-

sition behavior in the prevailing mine environment; (3)

pathogenesis and its relation with dust characterization;

and (4) effective mitigation methods including monitor and

suppression techniques. Number quantity-based monitoring

methods should be proposed in mining industry rather than

only employing mass-based monitoring. Numerous lab

technologies have been developed to quantify the size

distribution of collect samples, further studies will be

required on mapping the residence time of nano-particu-

lates in a large scale, in particular, considering the envi-

ronmental moisture and aging of DPMs in underground.

The niche-targeting regulations should be discussed

based on the scientific evidence of the mine nano-particu-

lates. Current mass-based regulations of respirable dusts

generally consider only the particulates larger than 1 lm

because the weight accumulation of particulates less than 1

lm is negligible among mechanical generated dusts. A

considerable number of nano-particulates and aerosols

could be generated through diesel-powered equipment. The

combination effects of DPM and existing dusts should be

carefully considered while formulating new regulations of

respiratory hazard exposure.

Mining operation related nano-dust sources have been

summarized in this review. However, the specific particu-

lates properties and size distribution could be dramatically

different with various mining related process and ore

properties. Various types of dusts should be collected in

different coal mines and M/NM mines adjacent to different

operations. Size distribution and surface functionary char-

acterization are needed to be conducted in the lab. It is

necessary to build up the mining operation-based database

of dust properties, that would contribute to the dust control

and operation optimization.
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