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Abstract Coal due to its relatively large quantities and wide distribution worldwide has generated renewed interest in

research and development with the aim of establishing coal conversion technologies that are technically reliable, envi-

ronmentally and economically feasible. It has proved to be a prominent energy source in emerging markets with increasing

energy demand by accounting for the largest increase in the demand of energy amongst all other energy sources. Fur-

thermore, with its higher mesophase content, coal tar is an appropriate raw material for precursors in the production of

carbon fiber. However, whenever a material is put to use, it is important to be able to associate its properties to the

behavioral characteristics during a conversion process so as to have a basis for opting for the material in a given process or

adjusting the operating conditions in order to optimize the material utilization. Therefore, as with any other material, it is

important to be able to relate the properties of coal to its utilization. A review was carried out on the influence of coal

properties on four main utilization technologies: gasification, carbonization, liquefaction and carbon fibre production.

Among several properties rank, type, mineral matter content, distribution of trace elements, structural composition and

pore structure were found to be most influential on the behavior of coal during conversion processes.
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1 Introduction

Coal is a combustible sedimentary rock formed from

ancient vegetation which has been compressed between

other rock strata. The vegetation was accumulated under

conditions that either limited or inhibited its decay.

Although it is a rock with one evolution process, it is very

heterogeneous in nature and the heterogeneity is brought

about by the kind of vegetation deposited (coal type),

degree of coalification (coal rank) and range of impurities

(coal grade) (Edgar 1983; Warwick 2002; Suarez-Ruiz and

Crelling 2008). The rank, type and grade are highly

influential on the structural composition of coal which can

be described as a cross-linked macromolecule comprising

of heterocyclic monomers joined by covalent and non-co-

valent bonds (Marzec 2002). The structure is made up of

aromatic layers consisting of aromatic rings ranging from

one to three rings and linked by aliphatic chains, as shown

in Fig. 1. During coalification, the chemical structure

gradually changes to an aromatized structure, acquiring

more stability and compactness as the methyl carbons

present in the aliphatic chain changes to aromatic carbons

thus reducing the spacing between the aromatic units

(Blayden et al. 1944; Hirsch 1954; Cartz and Hirsch 1960;

Manoj and Kunjomana 2012; Manoj 2014, 2016; Ahamed

et al. 2019). As this happens moisture and volatiles are lost

while carbon and the energy given out per unit weight of

coal increases resulting in different classes of coal, as

shown in Table 1.
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The chemical constituents present in coal structure

impact greatly on its mechanical behavior. The composi-

tion of organic matter and its degree of decomposition led

to varying coal strength and modulus of elasticity of dif-

ferent coals (Pan et al. 2013; Singh and Mrityunjay 2018b;

Ahamed et al. 2019) as the chemical structure was altered.

Coals of low rank have a high concentration of aliphatic

carbon (Cal–Cal) bonds while those of high rank are highly

concentrated with the aromatic—aliphatic carbon (Car–Cal)

and aromatic carbon (Car–Car) bonds. These aliphatic and

aromatic carbon bonds have different bond energies with

the aromatic carbon bonds possessing high bond energies

to a maximum of 450 kJ/mol while that of aliphatic car-

bons is 300 kJ/mol (Li et al. 2015; Ahamed et al. 2019).

The increase in bond energies affects the structural skele-

ton strength and hence coal strength increases as coal

matures. Also, the reduction in the aliphatic side com-

pounds and the inter-layer space between the aromatic

carbons resulting in reduced space between the aromatic

units contribute to the level of condensation and solid form

of the chemical structure (Manoj and Kunjomana 2012;

Manoj 2016). It is this densely packed coal matrix together

with the enhanced bond energies that result in improved

coal mechanical properties.

Calcite minerals found in cleats or fracture infillings

reduces the inter-granular stresses between particles and

this affects the frictional and cohesion strength of coal by

increasing coal porosity and permeability (Ward 2002;

2016; Susilawati and Ward 2006; Lebedev et al. 2014).

However, under dry conditions calcite minerals improve

Young Modulus of Elasticity of coal because of its high

resistance. They have resistance higher than that of coal

material which tends to improve the overall stiffness of

coal material (Gao and Kang 2017).

Clay minerals normally found in cleats, fractures or pore

spaces are susceptible to swelling with water adsorption

leading to fracturing either on the mineral or maceral

phase. The fracturing uses up the elastic energy stored

within the coal structure and its reduction causes a decrease

in the mechanical strength of coal (Faraj et al. 1996; Ward

2016; Xue et al. 2017).

The complexity of coal and variance in properties has

necessitated the need to understand these properties and

appreciate their influence on different coal utilization

processes (Sprunk 1942; Durie 1982). Not only do they

vary across different ranks but also in iso ranks. Properties

of coal play a significant role on the behaviour of coal

during conversion processes as they define its nature. They

are also important in establishing its value for different

end-use applications (Sprunk 1942; Mitchell 1997; Taylor

et al. 1998; Holuszko and Mastalerz 2015). The article

conducted a review of numerous relevant literature mate-

rial, inclusive of those reported since 1942 to the recent

material as an endeavor to capture an update on coal

properties in relation to its usage.

Table 1 Coal properties for different coal ranks (Orem and Finkelman 2003; Miller 2011; Speight 2015)

Rank Proximate properties (%) Ultimate properties (%) Atomic ratios Calorific value

(MJ/kg)
Moisture Fixed

carbon

Volatile

matter

Ash Hydrogen Carbon Nitrogen Oxygen Sulfur H/C O/C

Anthracitic

Metaathracite

Anthracite

Semianthracite

3–6 [ 98 \ 2 4–15 1.5–3.5 75–85 0.5–1 5.5–9 0.5–2.5 0.25 0.05 30.23–34.89

92–98 2–8 0.25–0.5 \ 0.05

86–92 8–14 0.5 0.05

Bituminous

Low volatile

Medium

volatile

High volatile A

High volatile B

High volatile C

2–15 78–86 14–22 4–15 4.5–6 65–80 0.5–2.5 4.5–10 0.5–6 0.5–0.75 [ 32.56

0.05–0.1

69–78 22–31

\ 69 [ 31 0.6–0.75 0.1

30.23–32.56

24.42–30.23

Subbituminous

Subbituminous

A

Subbituminous

B

Subbituminous

C

10–25 30–50 28–45 3–10 5.5–6.5 55–70 0.8–1.5 15–30 0.3–1.5 0.75–1 0.15 24.42–26.74

22.09–24.42

19.3–22.09

Lignite 25–45 25–40 24–32 10–50 6–7.5 35–45 0.6–1.0 38–48 0.3–2.5 0.8–1.2 0.2–0.5 9.3–19.3
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2 The role played by coal properties on coal
utilization technologies

2.1 Carbonization

Coke is vital during metallurgical processing as it acts as a

fuel source, spacer in the blast furnace, reducing agent and

carburizes the reduced iron. These roles are quite chal-

lenging as coke gets exposed to severe thermal, physical

and chemical conditions that no other material is capable of

(Devasahayam and Sahajwalla 2013). As a result of this, it

is important to control the quality of coke through proper

coal selection since carbonization is highly influenced by

coal properties. Several coal properties are essential for the

accomplishment of the carbonization process.

2.1.1 Organic composition

The organic composition of coals comprises of macerals

which are organic substances derived from plant material.

The degree at which the macerals have metamorphosed

during coal formation era affects the properties of the

produced coke (Jasienko et al. 1981; Jee 2012; Devasa-

hayam and Sahajwalla 2013) as it impacts on the ability of

coal to melt when subjected to increasing temperatures and

forming a coherent residue on cooling. The comparative

proportions of both reactive and inert constituents in

macerals are influential on the strength of the final car-

bonized product. Some of the maceral components will

melt upon heating making coal to act as a pseudo-liquid

material at various temperature ranges thus affecting the

strength of coke and coking operations (Patrick 1974).

Knowing the coal rank is important because as the quality

of coal improves, it molecular structure gets ordered with

an increase in aromatic carbon structure while the aliphatic

carbon structure decreases (Dı�ez et al. 2002; Jee 2012;

Devasahayam and Sahajwalla 2013). The ordered structure

means more of the unreactive structure as the aromatics are

more stable and will need improved conditions for reac-

tions. Due to this, high-rank coals are inappropriate for the

carbonizing process as it requires more reactive material

while low-rank coals with more aliphatic structures are

preferable.

2.1.2 Chemical composition

The content of volatile matter together with fixed carbon

determines the yield of tar, oil, and coke. High volatile

content will result in coal yielding large amounts of oil and

tar. The increased amount of volatile matter is due to the

presence of resins and spores with unusually high volatile

compounds. Coals considered good for coking contain

volatile matter in the range of 15% to 45% (Sprunk 1942;

Jasienko et al. 1981; Devasahayam and Sahajwalla 2013).

Increased quantities of fixed carbon in coal will yield large

quantities of coke. The production of coke is directly

related to the amount of fixed carbon regardless of the type

of coal being carbonized.

Coal with high calorific value, carbon and ash content as

well as high fusion temperatures results in the production

of coke that is slightly harder and less friable (Gupta et al.

2005). While increased oxygen content results in low

quantities of tar being distilled as compared to those dis-

tilled from coals containing low oxygen with the same

amounts of volatile matter mainly because oxygen tends to

act as an inert material.

Coals with high moisture, nitrogen, hydrogen, and

oxygen content result in the distillation of high volumes of

coke gas. It can therefore be concluded that the yield of

coking gas increases with an increase in the volatile matter.

However, the coke produced from these properties have the

tendency to expand and it is this expansion factor that

should be given detailed/comprehensive attention during

coal selection since high expanding coals can cause dam-

age to coke ovens (Sprunk 1942; Patrick 1974). Low

moisture content leads to an increase in bulk density of coal

and the degree of rocking attained inside the oven chamber

thus contributing to the enhancement of coke quality. Dry

coal charging processes capable of reducing moisture in

coal by a maximum of 5%–6% has been developed (No-

mura et al. 2004). This has resulted in less heat being used

during carbonization, increased productivity and improved

coke quality being achieved.

Small amounts of sulphur and phosphorus in coal is vital

for metallurgical processing as both components are highly

deleterious affecting the quality of products. Sulphur

impacts negatively on the mechanical characteristics of

steel by inducing brittleness during the heated state (red-

shortness). While phosphorus tends to increase the devel-

opment of brittleness in a material at reduced temperatures

(cold-short) (Devasahayam and Sahajwalla 2013).

2.1.3 Inorganic composition

Great attention needs to be given to the composition of ash,

most particularly the presence of Al2O3, SiO3 and alkalis.

Silica strongly affects the silicon content of hot metal while

alumina affects the fluidity of slag (Ward 2002; 2016;

Devasahayam and Sahajwalla 2013). Attempts have been

made to decrease the melting point of coal and coke as well

as the silicon content of molten metal by simultaneously

injecting pulverized coal and dolomite (Yamagata et al.

1990). This was to address the inactiveness of the deadman

resulting from the formation of material with high melting

temperatures outside the raceway. The presence of alkalis

Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber… 819
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in ash leads to their sublimation in areas of high temper-

atures in the furnace. They then re-condense in areas of

reduced temperatures decreasing the mechanical strength

of coke at the bottom part of the furnace, forming scaffolds

and attacking furnace lining refractory (Ward 2002; Matjie

et al. 2011; Creelman et al. 2013).

2.1.4 Mineral matter content

Ash content increases the fuel consumption of the blast

furnace by affecting the heat balance in the furnace as the

carbon content and calorific value of coal are reduced by

the requirement of additional fluxes essential for removing

ash as slag (Oshnock 1995; Devasahayam and Sahajwalla

2013). Also experienced is the negative effect on the sta-

bility of the blast furnace operation because of the catalytic

influence on the reactivity of coke and the alkali attacks

(Berkowitz 1979; van Krevelen 1993; Ward 2002; Miller

2017).

2.1.5 Coal grindability and handleability

Coal grindability determines the amount of power and

throughput required to crush coal to the targeted size by a

system used for preparing coal. This property is directly

associated with the composition of macerals. It is also

influenced by the rank of coal and the amount of mineral

matter contained in coal. Low volatile metallurgical coals

having a grindability index of 80, get easily milled thus

requiring less power for a given coal throughput. Also, they

allow for an increase in milling capacity hence an increase

in rates of injection without added capital expenses on the

added milling capacity (Anon 2 2001).

As the injection rates increase the handleability of coal

gets increasingly important because the injection system at

high injection rates gets easily affected by coals with poor

flow and handleability characteristics. Poor coal han-

dleability in most cases leads to transfer lines getting

blocked for the dense phase in the transport system (Ben-

nett and Holcombe 1994) as well as jeopardizing the

capability of the system to ignite. In order to assess the

handleability, experiments have been conducted (Black

et al. 2005) to predict the characteristic behavior of bulk

material in hoppers through assessment of characteristics

such as friction of walls, compressibility, permeability and

cohesion.

2.2 Carbon fibre production

Carbon fibre can be produced through the distillation of

carbonaceous natural resources like coal and petroleum to

attain pitch as a precursor. Pitch extracted from coal, a by-

product of the carbonization process during the production

of metallurgical coke, constitutes a valuable aromatic

hydrocarbon source essential as a raw material for manu-

facturing different carbon materials. The carbon materials

are derived from the thermal transformation of its highly

distributed macromolecules containing high aromatic car-

bon content and aliphatic constituents substituted by large

polycyclic aromatic hydrocarbons (PAH) (Kim et al.

2016a, b; Yang et al. 2016; Apicella et al. 2017; Hiremath

et al. 2017). However, scarce information on the chemical

structural composition of the precursor pitches which is

influential on the yield, quality of the resultant carbon

material and that of final products attained from their

thermal decomposition/treatment makes it a challenge in

manufacturing carbon materials. Several studies have been

conducted on carbon fibre production using coal-tar pitch

as raw material (Table 2).

Successful production of CFs is dependent on the

spinning process which in-turn is influenced by coal

parameters such as chemical structural composition,

structural molecular weight, and proximate properties.

2.2.1 Chemical structural composition

The oxygen bonding structure is important in the produc-

tion of CFs due to its effect on the composition of pitch

used in CF production. Oxygen atoms in coal extract with

high oxygen ratios are not directly bonded to the aromatic

carbons, which are the major constituents of the pitch.

Rather, they are bonded to hydrogen atoms when the

energy available for a reaction is relatively low. The oxy-

gen atom positioned at the CH-chain tail such as in the

structure formation of low ranked coals makes the coal

increasingly reactive and it is this high reactivity that

makes it extremely difficult to spin fibres from this type of

coal (Fathollahi et al. 2005; Takanohashi et al. 2008; Lee

et al. 2019). Also of importance is the double bond of the

carbon–carbon atoms. A strong double bond is indicative

of a strongly formed aromatic structure that is highly

stable. However, this high aromatic structure with solid

contents only tends to make it challenging for coal to attain

the structural chain required for a pitch with spinnable

behavior (Cooke et al. 1986; Odeh 2015; Kim et al.

2014, 2016a, b; Lee et al. 2019).

The aliphatic low molecular components i.e. the methyl

groups are essential for pitch spinnability. The carbons

connecting the two aromatic rings like a bridge result in the

production of CFs with thinner diameter because of the

820 K. P. Keboletse et al.
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improved linearity of the raw material (Kim et al.

2014, 2016a, b). It is important though that they remain in

the structure without bridging because they turn into

volatile material during spinning since they decompose

easily at relatively low temperatures making it difficult to

maintain the shape of the fibre (Yoshida et al. 1982;

Okuyama et al. 2004; Takanohashi et al. 2008; Lee et al.

2019).

Minimal aliphatic structures present in coal, in particular,

high-rank coal like bituminous coal and considered appro-

priate for carbonization, renders it a challenge spinning CF

since high content of aliphatic carbons results in a linear

structure which is more spinnable. Additional hindrance to

the spinnability process is high content of aromatic carbons

(Kim et al. 2016a, b; Lee et al. 2019). However, CFs with

uniform and clear surfaces can be successfullymanufactured

from coal with high aromaticity and low aliphatic carbons by

producing pitch with relatively high aliphatic content, high

oxygen content and yet relatively low reactivity through

chemical refining technique (Wang et al. 1998; Watanabe

et al. 1999; Okuyama et al. 2004; Rahman et al. 2013; Yang

et al. 2016; Kim et al. 2016a, b; Lee et al. 2019). Blending

coal tar pitch with other precursors such as petroleum pitch

and subjecting the coal tar pitch to solution or thermal

treatment can improve the quality of the resultant precursor

pitch (Tables 3, 4).

The aliphatic content was improved by blending and

treating the coal tar pitch. Initially, the coal tar pitch had

low aliphatic content, high aromaticity and oxygen content.

Subjecting it to solvent/heat treatment and blending

improved the aliphatic structures while the aromaticity and

oxygen content was reduced thus rendering the resultant

pitch appropriate for carbon fibre spinning. The morphol-

ogy of the resultant CFs also was improved (Fig. 2).

Carbon fibres produced from different spinnable pitches

had a smooth and uniform structure. The fibres showed no

sign of fusing, an indication that the stabilization process

was a success (Yang et al. 2016). However, the resultant

CFs differed in diameters. Coal tar pitch yielded CF with a

bigger diameter (15 lm), followed by a pitch from hyper

coal at 9 lm and a blend of NCO and coal tar pitch at

7.6 lm. The tensile strength of hyper coal-based CFs was

1150 MPa while that of NCO/CT based CFs was

1800 MPa (Kim et al. 2016a, b; Yang et al. 2016).

Although blending of coal tar pitch with other precur-

sors has been done to achieve the desired results, it can

have adversarial effects on the quality of the resultant

pitch. Studies conducted in the past (Giray et al. 2013;

Hiremath et al. 2017; Zabihi et al. 2019) indicated that

adding coal tar pitch to other precursors can drop their

charge density consequently leading to a reduction in the

repulsion forces hence a decrement in the conductivity of

electricity. It also leads to an increase in pitch viscosity and

this can be detrimental in achieving dense and smooth

fibres. It has been revealed that the addition of more coal

tar pitch to polyacrylonitrile (Huson 2017) had a negative

impact on the produced carbon fibres (Fig. 3). There was a

change in the colour of the fibre mats to brownish and the

packing of the carbon fibres got thicker. Also affected was

the morphology of the carbon fibers as it got uneven with a

surface that has lost its smooth appearance.

The defects on the quality of the resultant CF has also

been shown through the blending of coal tar and pyrolysis

fuel oil (PFO) (Lee et al. 2019), as shown in Fig. 4. When

the amount of pyrolysis fuel oil (PFO) was more in the

blend, the thermal stability of the pitch was lowered

resulting in fibre breakage during spinning, Fig. 4a.

Although the pitch blend of 300% coal tar did not result in

the breakage of the fibres, the surface of the CFs was

affected, Fig. 4c. The effect on the shape of the fibres could

have been due to the uneven distribution of molecular

weight (Baumgarten 1971; Deitzel et al. 2001; Okuyama

et al. 2004; Takanohashi et al. 2008; Zabihi 2012; Hire-

math et al. 2017; Huson 2017; Lee et al. 2019) as the

highly aromatic carbons in coal tar pitch mixed with and

overpowered the aliphatic carbons in polyacrylonitrile/

petroleum pitches hence poor spinnability.

2.2.2 Molecular weight distribution

Molecular weight influenced by aromaticity, is important in

CF production. High carbon-hydrogen mole ratio

Table 3 General properties of spinnable pitches (Lee et al. 2019)

Raw material C H N S O O/C C/H SP MW

Coal extract

(untreated)

78.6 6.0 0.3 0.2 14.9 0.14 1.09

Coal extract

(treated)

87 6.8 0.0 0.0 6.2 1.06 70 672

Blend of coal

extract

and

petroleum

89.7 7.5 0.3 0.2 2.3 0.99 55 609

Table 4 Aliphatic and aromatic fractions of pitch precursors (Lee

et al. 2019)

Precursor pitch CH3 CH2 Ca2 Car 1,2 Car 1,3 Fa

Coal tar (untreated) 1.4 1.4 1.4 21.8 74 0.96

Coal tar (treated) 5.53 8.17 1.2 25.32 41.02 0.85

Coal tar ? petroleum 15.74 5.82 2.57 20.21 32.47 0.76
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indicative of high aromaticity results in large molecular

weight due to the polycyclic structure. And because of this

high molecular weight distillation is rendered ineffective

during the preparation of spinnable pitches. The distillation

temperature would, therefore, need to be increased in order

to have improved yields of spinnable pitches (Kim et al.

2016a; Lee et al. 2019). On the other hand, the high content

of low molecular weight compounds results in easy

breakage of the fibers because of the volatile matter given

out during the spinning process. Also, an inconstant

molecular weight distribution results in the thickness of the

fibre being non-uniform due to partial presentation of high

molecular weight material (Lee et al. 2019).

2.2.3 Fluidity

Coal fluidity is essential during the preparation of the

precursor pitch. A detailed attention is vital in controlling

the development of mesophase (presence of liquid crystal

in an isotropic phase and tends to increase pitch viscosity,

Fig. 5). Existence of partial mesophase development can

be detrimental to fibre spinning process because of vari-

ances in the density and viscosity of the co-existing iso-

tropic and anisotropic phases (Park and Mochida 1989;

Kim et al. 2016a, b; Yang et al. 2018). The viscosity of the

pitch can adversely affect the initial shape of the droplet,

path of the jet and fiber diameter. When the viscosity

increases the fibre diameter increases thus negatively

affecting the pitch spinnability (Deitzel et al. 2001; Zabihi

2012; Hiremath et al. 2017; Huson 2017).

Coal tar pitch presents a viable precursor alternative in

that it facilitates the process of stabilization by increasing

the heat that is released during the process thus lowering

the energy consumed for stabilization of fibres i.e. mini-

mized stabilization temperatures with high heat of reac-

tions are essential for an efficient thermal stabilization

process (Kissinger 1957; Zabihi 2012). In addition, its high

aromaticity is indicative of high thermal stability, a quality

essential for the steady spinning of the pitch possessing

high softening point since melt spinning is normally carried

out at a temperature 50 �C higher than the softening point

(Kim et al. 2013, 2014; Lee et al. 2019).

2.3 Coal gasification

Coal gasification involves coal reaction with air, oxygen,

steam or their mixture to produce a gaseous fuel termed

synthesis gas. The principal controlling properties of coal

during the gasification process are its reactivity, ash and

slag properties, particle size and coal caking and swelling.

2.3.1 Coal reactivity

Coal reactivity is one fundamental property essential for

the success of the coal gasification process (Ozer et al.

2017). It is influenced by the degree of coalification,

organic composition (macerals), mineral contents, coal

porosity and surface area.

(1) Degree of coalification

Degree of coalification is reliant on the organic

composition of coal (macerals), chemical structural

composition, mineral matter content and pore struc-

ture (Jones et al. 1985; Alonso et al. 2001; Méndez

et al. 2003; Choudhury et al. 2008). Coal has been

classified using the carbon content of its macerals

into a low rank containing carbon content less than

80% and a high rank containing more than 80%

carbon. The catalytic effect of coal minerals has

been found to be the chief controlling factor of the

reactivity for coals in the low rank while the

reactivity for high ranked coals is mainly controlled

by the available active sites found in the coal matrix

(Miura et al. 1989). Low ranked coals contain high

volatile material and more hetero-atoms inside its

organic structure. Their structure also has more open

pores and increased oxygen-functional groups as

compared to high ranked coals. Furthermore, low-

rank coals comprise of a poorly aligned aromatic

structure as opposed to high-rank coals composed of

better aligned carbon atoms. The amorphous and

more open pore structure of low-rank coals makes it

more reactive with oxygen and steam (Ozer et al.

2017).

The highly dispersed catalytic minerals, carboxylic

acids as well as phenolic-functional groups also

contribute to the high reactivity of low ranked coals

(Radovic et al. 1983). Also accountable for this high

reactivity is the highly concentrated oxygen-func-

tional groups, increased amount of macropores and

the distribution of the catalytic in-organic con-

stituents. The functional groups provide the cations

with reaction zones hence improving on the reactiv-

ity of coal due to catalysts (Ye et al. 1998). They can

also act as active zones as well as exchange zones on

which alkali elements can be mounted as exchange-

able cations (Takarada et al. 1985). Previous studies

(Irfan et al. 2011) revealed that once alkaline

elements are removed from low ranked coal, its

reactivity would be the same as the reactivity of high

ranked coal.

The high moisture content of low ranked coals

reduces the temperature generated in the combustion

area thus decreasing the thermal efficiency of the
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gasification process. As a result of this, coal feed

rates of low ranked coals need to be more than those

of high ranked coals in-order to improve the quality

of syngas by increasing the heating value (Durie

1982; Shadle et al. 2002; Ozer et al. 2017; Fletcher

2017).

Low rank coals contain high volatile matter as

compared to high-rank coals. This characteristic

tends to enhance coal reactivity because the activa-

tion energy would be lowered (Hakvoort et al. 1989;

Küçükbayrak et al. 2001). It also improves on the

carbon burnout, ease of ignition and has been used to

predict the number of hydrocarbons that can be

given out during the gasification process (Hattingh

et al. 2011).

(2) Organic composition (coal macerals)

The organic structure of coal is made up of three

maceral groups; vitrinite, inertinite, and liptinite/

exinite. It is the composition of these constituents

that is influential in the transformation of coal

structure during the conversion process since mac-

eral groups react differently (Suarez-Ruiz and

Crelling 2008; Suarez-Ruiz 2012).

Behavioural characteristics of macerals during the

coal gasification process are as followed:

� Vitrinite—the most abundant maceral group

derived from woody tissues with qualities and

the reactivity varying with the rank of coal.

Their high hydrogen content has resulted in their

capability to melt, swell and soften after coal has

been carbonized. The mobile carbon undergoes

nanoscale re-arrangements to align layers that

will easily coalesce when subjected to heat

treatment leading to the formation of extended

layers as well as the loss of edge sites and that of

reactivity (Beeley et al. 1996; Zhuo et al. 2000;

Zhang et al. 2008). Coals rich in vitrinite

produce char with high porous structure and

large amounts of mineral matter mainly calcium

and potassium improving its catalytic activity.

Infact, vitrinite-rich char has high gasification

reactivity regardless of the presence of minerals

(Megaritis et al. 1999; Sun et al. 2004).

` Liptinite/exinite—this maceral group originates

from hydrogen-rich sources like spores, leaf

cuticles, plant algae and is very reactive.

Although it fails to swell or agglomerate, it has

the capacity to melt during heating and hence

most of its mass proportion is lost during

pyrolysis (Zhuo et al. 2000; Mahagaokar 2004).

´ Inertinite—the most unreactive maceral group

rich in carbon and originates from biodegraded

wood. Inertinite fails to melt when subjected to

heating and would lose only a slight quantity of

its mass through pyrolysis and as a result it is a

poor gasification agent due to its unreactivity

towards CO2. Coals rich in inertinite possess a

structure that is highly oriented with a high

degree of crystalline packing (Sharma et al.

2000; Van Niekerk et al. 2008). They are also

more aromatic with more polycondensed con-

tents and have been found to be appropriate for

combustion and gasification technologies (Sun

et al. 2003; van Niekerk et al. 2008).

Inertinite and vitrinite are responsible for the

carbon structure conversion of coal during

gasification while the change in the mineral

matter has been attributed to the presence of

inertinite (Gupta et al. 2005; Matjie et al. 2011).

(3) Porosity of coal and surface area

Coals of low rank have a highly open porous

structure with increased active sites for oxygen-

steam reaction during the gasification process. A

correlation has been established between the reac-

tivity of coal and its micro porosity basing on the

active surface area that is directly proportional to the

entire surface area (Irfan et al. 2011). Reactions of

gasification mainly take place on the surface of

macropores instead of micro pores due to the highly

concentrated active zones in the former than in the

latter. In fact, macro pores have been found to

materialize in crystallite edges or sites that have

contact with organic impurities catalytically active

whereas the micropores were found to be made up of

less reactive basal planes (Hurt et al. 1998).

Also, there is a relation between active sites

concentration or surface area reaction and the

accessibility of reactants in the gaseous state to the

active sites, indicating that the structure of pores can

be linked to charcoal reactivity (Slaghuis et al. 1993;

Ng et al. 1988; Kajitani et al. 2006; Çakal et al.

2007). When a critical value (70%–80%) for char

porosity is attained fragmentation into finely

grounded particles occurs improving the reactivity

hence char conversion (Jayaraman and Gokalp

2015). Coals with low surface area and porosity

have low reactivity (Adschiri et al. 1986; Arenillas

et al. 2004; Wu et al. 2009; Ozer et al. 2017).

(4) Mineral matter in coal

The most common minerals found in coals used for

gasification comprise mainly of kaolinite with small

quantities of quartz, illite, dolomite, calcite, pyrite

and small traces rutile and phosphate (Ward

2002, 2016; Matjie et al. 2011). Calcite together
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with dolomite appear within vitrinite macerals while

Ca and Ti appears as inorganic elements that

associate with the organic matter. Sodium, chlorine

and sulfur were also found in some coals.

(5) Effect of catalytic behaviour of coal minerals

The interaction of mineral matter with the carbon

matrix in coal has a great effect on coal reactivity.

Mineral matter can be discrete grains, embedded

within or attached to the carbon matrix as is the case

with high-rank coals. The embedded mineral matter

has a high specific heat capacity and absorb more

heat leading to temperature decrease and subse-

quently low coal reactivity (Wigley et al. 1997;

Hattingh et al. 2011). Mineral matter occurring as

dissolved salts trapped inside the pores and/or are

attached chemically to the carboxylic acids and the

phenolic groups in the form of exchangeable ions

have strong effect on char reactivity of low ranked

coals than that of high ranked coals (Quann and

Sarofim 1986; Huggins and Huffman 1995; Ballan-

tyne et al. 2005).

Also of great importance on coal reactivity and hence

coal gasification rate are the inorganic metal ions such as

K2?, Na2?, Ca2? Mg2?, and Fe2? as they get to trade ions

with hydrogen ions (H?) making up the carboxylic acids or

phenolic groups. Ca2? influences the syngas composition

by promoting the water–gas shift reaction while Ca and

CaO organically bound by calcite decomposition impacts

on the catalytic effect during coal gasification (Radovic

et al. 1983; Wigley et al. 1997; Skodras and Sakel-

laropoulos 2002; Chodankar et al. 2007; Hattingh et al.

2011; Ozer et al. 2017).

2.3.2 Properties of ash and slag

(1) Mineral matter conversion into ash

The fusing, melting and partial crystallization on

cooling of mineral matter results in the formation of

cristobalite, magnetite, mullite, diopside and anor-

thite. These new formed phases and their properties

(chemical composition, fusion temperatures and slag

viscosity) need to be taken into account to reduce

risk of clinkering, ash deposits and agglomeration,

fouling and corrosion. The occurrence of any would

lower the efficiency and capacity of the gasification

process resulting in an increase on the power cost

(Zevenhoven-Onderwater et al. 2001). Coal compo-

nents formed at temperatures lower than the ash

melting temperature such as magnesia (MgO), ferric

oxide (Fe2O3), silica (SiO2), lime (CaO), alumina

(Al2O3), titanium oxide (TiO2), alkali compounds

(K2O, Na2O), some sulphur and chloride compounds

may react with each other under high gasification

temperatures forming several different compounds

with interstitial vesicular glass of calcium to iron-

rich calcium (Hu et al. 2006; Kosminski et al.

2006a, b, c; Gupta et al. 2007; Bai et al. 2010).

(2) Ash fusion temperature

Ash fusion temperature defines the melting behavior

of ash during the gasification process. When gasify-

ing low-rank coals, the operating temperature needs

to be less than the temperature at which the ash fuses

to avoid molten fused deposits forming whereas for

high rank coals the operating temperature needs to

be higher than the temperature at which fusion of ash

occurs. This would lessen challenges related to slag

formation by allowing the melted heated ash (slag)

to flow down the reactor walls and drain easily from

the reactor (Li 2010). Ash fusion temperature was

found to reduce with increasing SiO2 wt % signify-

ing its fluxing potential on ash and it increased with

increasing Al2O3 content (Gupta et al. 1998).

(3) Slag viscosity

Coals with similar ash fusion temperature can have

differing slag viscosities and portray different slag-

ging behavioural traits because the ash fusion

temperature is dependent on ash mineral composi-

tion. Therefore, ash having varying compositions

may exhibit similar ash fusion temperatures but

dissimilar slag viscosities (Gupta et al. 1998; Lolja

et al. 2002; Trapp et al. 2004; Liu et al. 2013). Slag

viscosity is highly influenced by the temperature and

chemical composition of ash. When temperatures are

low the slag gets more viscous with the poor erratic

flow while high temperatures lead to fast refractory

wear (Groen et al. 1998). Slag viscosity increases

with increasing alumina and silica but reduces in the

presence CaO, FeO, MnO2 and MgO (Wang and

Massoudi 2013).

(4) Ash fouling, deposition and agglomeration

Some mineral constituents can get entrained within

the stream of the synthesis gas being deposited on

the cool reactor surfaces or wall tubes causing

corrosion, slagging and fouling. They can even

negatively impact on the devices for emission

control and other equipment (Vamvuka et al.

2008). The deposition of inorganics affects the

transfer of heat within the reactor thus altering the

operation and capacity of the reactor hence the

system efficiency. Fouling and deposition challenges

are promoted by the existence of the alkali metals

(alkaline earth metals, chloride, silicon, Na) and

sulphur in ash (Ward 2002, 2016; Creelman et al.

2013; Ozer et al. 2017). Furthermore, vapours due to

alkali metals lead to the final end-use equipment
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being corroded. The dominant alkali species are

sodium and potassium hydroxides as well as chlo-

rides. Small amounts of chlorine contained in some

coals during the gasification process produce gas-

eous HCl that interact with metal compounds

accumulating in syngas coolers leading to deposits

of chlorides like FeCl2, NaCl, and CaCl (Kosminski

et al. 2006a). Ash agglomeration results in channel

burning. It also leads to challenges related to

pressure drop in the reactor and the reactor perfor-

mance being unstable hence cut-backs of the gasi-

fication loading (van Dyk and Waanders 2007).

2.3.3 Coal particle size

Large sized particles have a tendency to reduce the reac-

tivity of coal and hence poor syngas quality. Also experi-

enced in relation to large sized particles are challenges with

transporting the large particles in the reactor and start-up

difficulties of the equipment. Gasifying low rank coals

using large particle sizes can lead to the formation of

clinker and channeling (Speight 2014). Fine coal particles,

on the other hand, reduce carbon conversion thereby

decreasing syngas production (Dittus and Johnson 2001).

2.3.4 Coal caking and swelling

Coal caking and swelling apply in particular to bituminous

coal and it leads to particles adhering to one another and

forming clusters to create a phase known as metaplast. The

forming agglomerate phase can interrupt flow patterns of

gas and thus reduce the thermal efficiency. However, the

tendency of coal to cake reduces as the volatile matter

content falls below 20 wt % (Shadle et al. 2002). The

swelling of coal affects the reactivity as the operation of

the reactor gets unstable due to fluctuations in pressure

drop and channeling. Also, the size of coal particles and

density of the produced char are affected (Jayaraman and

Gokalp 2015). In addition, caking coals tend to form tars

with high molecular weight which if not controlled can

lead to blocking and fouling of lines, heat exchangers and

filters thus tampering with the system sufficiency.

2.4 Liquefaction

Coal liquefaction involves the conversion of coal into liq-

uids. There are two methods for liquefying coal; direct

liquefaction, also known as hydrogenation involves the

production of liquid fuels directly from coal using a

hydrogen donor solvent and indirect liquefaction. Indirect

liquefaction process coal is liquefied through the Fischer–

Tropsch (FTS) process. The FTS process uses synthesis gas

from the gasification process and converts it into liquidous

hydrocarbons and associating oxygenated compounds

using different catalysts from Group VIII. The product

mixture depends on the carbon monoxide to hydrogen ratio

(Berkowitz 1979; Durie 1982; Höök and Aleklett 2009;

Khan 2011; Vasireddy et al. 2011; Heydari et al. 2016;

Miller 2017).

Coal consists mainly of solid organic matter with an

atomic hydrogen to carbon ratio ranging from 0.1 to 4.

Therefore to produce liquids from coal requires breaking

down the chemical structure into compounds with a low

molecular weight that is in a fluid state under ambient

conditions, eliminating heteroatoms in particular O, N and

S and increasing the hydrogen to carbon ratio. These

generate saturated aromatic compounds and stabilizes the

resultant liquids (Durie 1982; Gibson 1983).

Different coal properties have varying significant impact

on the coal liquefaction process. Comprehensive studies

have been carried out on several chemical and physical

characteristics of coal and their importance during the

conversion of coal into liquid products (Table 5).

2.4.1 Degree of coalification

The degree of coalification is the most crucial coal

parameter in liquefaction. Coal rank through vitrinite

reflectance can be used to determine the potential of a coal

seam for producing hydrocarbons. A model by Tissot and

Welte (1984) was used to predict the primary hydrocarbon

potential through the evolution stages of coal (Fig. 6).

Coals which have passed the evolution phase of diagenesis

(a phase when coal significantly loses oxygen as carbon

dioxide and water) and reached to the catagenesis stage

(when hydrogen and carbon are lost due to oil and gas

generation when the organic matter under-goes thermal

decomposition as temperature increases with burial in the

sedimentary basins) have great potential for generation of

hydrocarbons (Tissot and Welte 1984; Suarez-Ruiz and

Crelling 2008; Suarez-Ruiz 2012; Singh and Mrityunjay

2018a, b).

A high liquefaction yield is obtained near the transition

from brown coal to bituminous coal i.e. coals with carbon

content in the range of 80% to 85% (Randolph 1944;

Vasireddy et al. 2011). When the carbon content is between

87% and 89% (medium volatile bituminous coal), syncrude

yield declines sharply. Coals of high rank with a carbon

content greater than 90% (low volatile bituminous coal and

anthracite coal) are mostly unreactive (Vasireddy et al.

2011). The yield of oil decreases and that of moisture and

carbon dioxide increases with a decrease in the carbon

content of the bright coal hydrogenated (Randolph 1944).

Hydrocarbon yield is limited by high oxygen content

approaching 30 wt% dmf. The oxygen reacts with carbon
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Table 5 Coal parameters with significant influence on liquefaction process

Parameter Techniques

applied

Observation Reference

Coal rank 1. Petrographic

analysis

2. Proximate

and ultimate

analysis

1. More tar and oil can be distilled from coals with

high volatile matter

2. Less tar and oil are distilled from high oxygen

coals than from low oxygen coals of equal volatile

matter content

3. Coals with high hydrogen content, high content of

aliphatic structures, simple aromatic structures, low

oxygen and nitrogen contents are preferable for the

conversion of coal into liquid fuels

4. High oxygen content limits the production of

liquid fuels because it reacts to form water and

carbon oxides while hydrogen content of coal

contributes the maximum to the generation of

liquid hydrocarbons

5. Products of coal liquefaction decrease in quantity

with an increase in the rank of coal. Coals with high

carbon content are difficult to liquefy while those

with low carbon convert more easily into liquid

products

6. Yields of products with high viscosity is obtained

from coals of low rank resulting in pumping

difficulties

7. Although low rank coals give low yields, the

fraction of low boiling distillates increase with

decreasing coal rank. Their products, in particular

from sub-bituminous coals are highly volatile with

more saturated hydrocarbons and are less aromatic

with higher hydrogen content and fewer

heteroatoms

Sprunk (1942), Davis et al. (1976), Durie (1982),

Bertrand (1989), Newman et al. (1997), Peters

et al.(2000), Sykes (2001), Vasireddy et al. (2011),

Singh et al. (2013), Speight (2014), Singh and

Mrityunjay (2018a, b)

Organic

composition

1. Microscopic

investigation

2. Megascopic

analysis

3. Calorific

analysis

4. Rock–eval

pyrolysis

analysis

1. Macerals with high constituents of spores and

resins hence high volatile contents yield large

quantities of oil and tar

2. Bright coals are best for liquefaction than splint

coals

3. Fusain macerals yielded 15%–27% 0f liquefaction

products

3. Banded coals had high calorific value hence high

liquefaction yields due to more presence of high

reactive macerals

4. Coals with high content of reactive macerals

(vitrinite and liptinite) with high H/C atomic ratios

in the range of 0.8–0.9 are suitable for liquefaction

process

5. Hydrogen and carbon make up the complex

organic compounds of coal while nitrogen occurs

mainly in organic matter

6. Macerals of Type III kerogen, that is macerals

from plants associated with terrestrial inputs into

lacustrine or marine environments, have the

capability to produce oil as well as gas but most of

them are better suited for production of gaseous

hydrocarbons

Sprunk (1942), Jones et al. (1985), Durie (1982),

Falcon and Snyman (1986), Newman et al. (1997),

Suarez-Ruiz and Crelling (2008), Singh et al.

(2013), Speight (2014), Mishra et al. (2018), Singh

and Mrityunjay (2018a)

830 K. P. Keboletse et al.

123



and hydrogen to form water and carbon dioxide during

oxygen elimination processes. In addition, moisture con-

tent needs to below as it has to be removed during the

hydrogenation (Durie 1982; Vasireddy et al. 2011).

(1) Chemical structure

The differences in the yield of syncrude from

different coal ranks can be attributed to the chemical

configuration of coal with the potential to influence

the nature of its chemical reactivity (Zhou et al.

2016). Low ranked coals have an increased content

of aliphatic carbon (Cal–Cal) bonds whereas high

ranked coals have an increased concentration of

aromatic-aliphatic carbon (Car–Cal) bonds and aro-

matic carbon (Car–Car) bonds. An enhancement in

the carbon content results in an increased number of

aromatic carbon bonds (Shi et al. 2013; Zhou et al.

2016).

The bond energies of the aliphatic carbons and the

aromatic carbons are different with the aromatic

carbons having high bond energy (Fig. 7) (Shi et al.

2013; Li et al. 2015; Ahamed et al. 2019). The

increased bond energy reduces the reactivity of coal

as more energy will be required to breakdown the

aromatic structure hence the low syncrude yield by

coals of high rank. Coal liquefaction is favoured by

the simple skeletal structure that comprises mainly

of simple aromatic rings which are less likely to be

removed from the lignin basing on the building

block for phenyl propane (Durie 1982).

(2) Porosity

Coal porosity is most relevant in relation to direct

liquefaction. Determining the surface area and pore

volume is essential for establishing the correlation

between the surface area and chemical reactivity

with regard to the access of gases and liquids to the

interior of coal particles (Vasireddy et al. 2011).

Coals from different ranks have a structure made up

of varying pores being the macropores having

diameters greater than 50 nm, mesopores with pores

ranging from 2 nm to 50 nm and the micropores

with pores less than 2 nm. The macropores reduce

with an increase of coal rank while the mesopores

and micropores increase with an increase in the rank

of coal (Zhu et al. 2016).

2.4.2 Organic composition

The organic composition of coal is directly related to the

oil chemistry and potential of coal to generate hydrocarbon

compounds hence its importance in the liquefaction pro-

cess. Organic constituents in coal differ greatly in ease of

liquefaction and yield of the various products. The type of

maceral usually with the highest degree of capacity for

liquefaction is fusain. Fusain is a mixture of opaque fibers

termed fusinite and translucent or semi-opaque material

ranging from 10% to 30%. The yield of liquefaction is

dependent primarily on the amount and nature of the

translucent material. The translucent material consisting of

constituents such as leaves, spores, resins, cuticles are

usually considered good for hydrogenation (Sprunk 1942;

Randolph 1944).

The estimated oil yields based on weight that can be

obtained from clean macerals are 78%–80% for liptinite,

6% to 10% for vitrinite while the inertinite yields 0%–2%

of liquefaction products. The vitrinite macerals readily

dissolve and as such assist in conversion of coal into liquid

products through their natural thermoplastic characteristics.

The high yields by liptinites is due to the presence of

Table 5 continued

Parameter Techniques

applied

Observation Reference

Mineral

matter

content

1. Pyrite in coal tends to subject catalytic effect on

coal hydrogenation

2. Alumino-silicate minerals behave as cracking

catalysts at elevated temperatures during

hydrogenation of coal

3. Calcium in coal leads to formation of deposits

hence blockage on the used equipment as calcium

carbonate forms

Durie (1982), Vasireddy et al. (2011), Singh et al.

(2013)

Particle size Decreasing the particle size increased the total

conversion of coal into liquid products. With

reduced particle size the solvent molecule had less

distance to penetrate into the coal particle for

extraction of products

Neavel et al. (1981), Giri and Sharma (2000),

McMillen and Malhotra (2006), Li et al.

(2008a, b), Heydari et al. (2016)
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aliphatic structures while the inertinites simply remain inert

during a conversion process (Saxby and Shibaoka 1986;

Bertrand 1989; Hunt 1991; Newman et al. 1997; Peters

et al. 2000; Sykes 2001; Suarez-Ruiz and Crelling 2008;

Singh and Mrityunjay 2018a, b). Generally, for coal to be

considered suited for liquefaction, its organic matter should

be 10% to 20% Type I kerogen or 20% to 30% with Type II

kerogen (Powell and Boreham 1994). Type I kerogen is

from a different precursor with high aliphatic content from

various sedimentary environments whereas Type II is

related to the planktonic organic matter found in open

marine as well as freshwater from lacustrine environments

(Suarez-Ruiz 2012).

The liquid yield and the nature of solid residue from

coals of constant coal rank condition is highly dependent

on the maceral composition (Kalkreuth et al. 1986). Coals

rich in vitrinite and exinite have high hydrogen content and

increased hydrogen has been found to increase the products

of liquefaction (Singh et al. 2013; Mishra et al. 2018).

2.4.3 Size of coal particle

Particle size is deemed a significant parameter during coal

liquefaction conversion. Small-sized particles have reduced

distances of diffusion by the solvent molecule in order to

access the core of the coal matrix for the extraction of

liquid products. Large-sized particles result in a diffusing

component being consumed quicker than its diffusion into

the particle due to the long distance it has to travel to reach

the core of the particle. This leads to a reaction in zones

near the center of particle which in turn will lead to an

increased level of mixing of free radicals. The free radicals

result in products with stable high molecular weight being

formed which is undesirable during liquefaction (Schlos-

berg 1985; McMillen and Malhotra 2006; Li et al.

2008a, b). Extraction yields have been found to be more for

small sized particles as they provide increased coal surface

area and enhance the ability of the solvent to easily pen-

etrate into the coal structure hence an increment of yields

(Giri and Sharma 2000; Heydari et al. 2016).

2.4.4 Inorganic matter

The heterogeneity of coal has resulted in mineral matter

distribution of various forms, compositions and associa-

tions. These mineral matter constituents are not really inert

during the conversion of coal into liquids and can affect the

distribution and yields of liquid products. It has been

reported to act beneficially as a catalyst for liquefaction.

Pyrite and alumino-silicates exert a catalytic effect during

coal hydrogenation. Furthermore, the mineral matter can be

detrimental on the equipment used for liquefaction by

formation of scale and deposits on the reactor walls and can

lead to blockage problems due to formation of compounds

like calcium carbonate adversely affecting the reactor

capacity (Durie 1982; Heydari et al. 2016).

The ash content of coal should not exceed 10 wt % as

constituents likely to form ash exist as cations associating

with carboxylic acid compounds in coal. Their nature and

quantity can have a significant effect on the behavior of

coal as it undergoes thermal decomposition and aid expe-

dite oxygen elimination. In addition, high ash content

adversely affects the liquefaction process by negatively

impacting the reactor capacity. Also, a ballasting impact

relating to the recoverable yield of distillable oil can be

experienced as the added catalyst gets deactivated by the

presence of mineral matter (Durie 1982).

Coals with vitrinite reflectance ranging from 0.57% to

0.62%, hydrogen to carbon atomic ratio falling in the range

of 0.73 to 0.87 with reactive maceral content of 72% to

96.8% and volatile matter content in the range of 29.4% to

57.1% are considered suitable for conversion into liquid

products (Davis et al. 1976).

3 Discussion

Physical and chemical characteristics of coal are essential

in determining coal usage. The level of coalification

reached by coal can be deemed the primary factor as it

influences all other coal parameters. Different ranks of coal

vary in the composition of macerals, plasticity, porosity,

reactivity, chemical structural composition, and the inor-

ganic compounds, all these being the parameters essential

in selecting the coal technology to implement for a par-

ticular coal. Also of importance is the organic/maceral

composition of coal as it is responsible for most of the coal

benefits such as its energy output during combustion, its

role in metallurgical processing, its capacity for in situ

methane absorption and its potential as an alternative

hydrocarbon source (Sprunk 1942; Falcon and Snyman

1986; van Krevelen 1993; Nas 1994; Mitchell 1997;

Holuszko and Mastalerz 2015). An understanding of the

effect of maceral composition during coal conversion

process is essential as the variation in its physical and

chemical properties influences coal utilization technolo-

gies. High yields of volatile matter can be achieved from

liptinite upon heating making it ideal for bitumen and tar

production (Falcon and Ham 1988). Vitrinite found in

bituminous coal of low rank is suitable for liquefaction

process due to its high hydrogen content, more aliphatic

structures and low aromaticity (Falcon and Ham 1988; Sun

et al. 2003). Inertinite molecular structure characterized by

low hydrogen and volatile matter content, higher thermal

stability, high aromaticity and condensation in comparison

to other maceral groups renders them the least reactive
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yielding low gas and tar during pyrolysis (Zhao et al.

2011).

The composition of macerals influences the composition

of elements in coal which in turn impacts on the coal

reactivity. Vitrinite contains less hydrogen than liptinite

but more oxygen while inertinite has high carbon content

and lower hydrogen than vitrinite but similar oxygen

(Durie 1982; Suarez-Ruiz and Crelling 2008; Suarez-Ruiz

2012). It is the arrangement of these elements in a coal

structure that determines the reactivity of different coals.

These elements can exist either as aromatic or aliphatic

structures. Coals consisting of more aromatic structures as

compared to the aliphatic structures have low reactivity as

more energy will be needed to breakdown the covalent

bonds existing in the aromatic structures. Hence for easier

coal conversion more aliphatic structures are essential.

However, because of the intimate association of mac-

erals within coal, determining the effect of one maceral

group can be a challenge. As a result, separation techniques

such as chemical fractionation, density separation and

centrifuging, have been used to better appreciate the

structural properties and the reactivity of individual mac-

eral groups (Maledi et al. 2017). These techniques may

have an adversarial effect on the maceral composition

hence misleading results.

The degree of coalification together with maceral com-

position impact on the mechanical behaviour of coal by

altering its structure. Coal structure is made up of aromatic

and aliphatic carbon structures. As coal matures the ali-

phatic carbon structures turn into aromatic carbon struc-

tures. The high bond energies for the aromatic structures

are responsible for the low reactivity of high rank coals

while low bond energies for the aliphatic carbon structures

renders low rank coals high reactivity (Pan et al. 2013; Li

et al. 2015). The functional groups making up the structure

of coal are inclusive of methylene, methyl, phenolic

hydroxyl and carboxyl groups. The methyl groups exist as

substituent in the aromatic nuclei and are responsible for

almost 20% of the hydrogen found in coal structure. While

60%–80% of organic oxygen is due to phenolic hydroxyl

groups. An appreciable oxygen content found in low rank

coals is due to the carboxyl groups (Durie 1982). These

functional groups tend to impact negatively on coal

strength. Although they hardly react with water, others act

as hydrophilic sites attracting water molecules that fill up

the capillary pores. The water adsorption leads to more

pressure being applied on particles causing the relaxation

of the intergranular stresses hence reduced frictional and

cohesion strength (Kaji et al. 1986; Yu et al. 2013). An

average molecular model have been proposed using vit-

rinite macerals to gain information on the structure of coal.

However, this model was found to be misleading as it was

suitable for the particular vitrinite used. It also included a

mixture of low molecular weight entities (Durie 1982). As

a result, understanding coal structure still remains a chal-

lenge because of its complex heterogeneous cross linked

polymeric structural networks.

The mineral matter during a conversion process goes

through thermal decomposition, disintegration, fusion and

agglomeration (Chakravarty et al. 2015). These transfor-

mations are essential in providing information with regard

to coal suitability for a particular technology (Matjie et al.

2011; Zhang et al. 2011). As the minerals react and

undergo transformations there is formation of molten

deposits (fouling and slagging) on the walls of conversion

units resulting in great operational challenges during the

process (Fig. 8).

The deposits decreases the absorption of heat in the unit

thus decreasing the thermal performance as well as effi-

ciency. Previous studies have been conducted where soot

blowers using high pressurized air, steam or water jets were

used to remove the deposits. However, the method did not

prove effective enough to get rid of strongly adhered

deposits since excessive blowing led to erosion damage of

the equipment (Wee et al. 2005).

A model was devised to determine the usage of coal

(Falcon and Snyman 1986). This model is based on the

rank and maceral composition of coal. It uses the vitrinite

reflectance and the percentage of the reactive macerals to

determine the end-use application of coal (Fig. 9).

When applied to Indian coals from Argada and West

Bokaro coals (Singh et al. 2015; Singh and Mrityunjay

2018b) the model indicated that the coals were best used as

blending coking coals because of the high amount of

reactive macerals found in them.

Also developed to assist in determining the use of coal

was a Seyler diagram (Fig. 10) basing on the content of

hydrogen and carbon (Singh et al. 2015).

The use of coal in relation to hydrogen and carbon

contents can be deduced from the diagram as shown in

Table 6.

Although the models have proved applicable in deter-

mining the coal utilization technology to implement for

those particular coals, they were specifically developed for

coals rich in minerals hence difficult to beneficiate for coals

Table 6 Coal utilization basing on hydrogen and carbon contents as

per Seyler diagram

Utilization Carbon content (%) Hydrogen content (%)

Gasification 68–80 2.5–5.5

Metallurgy 82–93 4.9–5.5

Carbon electrodes Greater than 93 Greater than 4.5

Liquefaction 77–87 Greater than 5.0
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varying greatly in maturity and composition of organic

matter. Therefore a tool suitable for coals portraying dis-

similar characteristics is needed. Furthermore, the proper-

ties important in coal utilization are inversely related

(Durie 1982; Mishra et al. 2005; Yang et al. 2016) there-

fore a compromise is necessary for satisfactory perfor-

mance of the utilization technology deemed applicable.

4 Summary and Conclusion

The degree of coal coalification is the most fundamental

parameter in determining the end-use application of coal as

it influences all the other coal properties and as such is

applicable in all coal utilization technologies. Final influ-

ence of coal properties found to be critical on carboniza-

tion, carbon fiber production, gasification and liquefaction

was summarized in Table 7.

Table 7 Coal properties critical during carbonization, gasification, liquefaction and carbon fiber production processes

Property Technology

Carbonization Gasification Liquefaction Carbon fiber production

Organic matter

(macerals)

composition

Vitrinite, liptinite Vitrinite, liptinite Liptinite (78%–80% yields),

vitrinite (6%–10% yields)

Vitrinite, liptinite

Structural

composition

(aromatic and

aliphatic

structures)

Minimal aliphatic structures High aliphatic structures,

increased hetero-atoms

Simple aromatic rings,

increased aliphatic carbon

Low aromatic carbon, high

aliphatic carbon

Elemental

composition

Low O, C, S, P content High H,O content, low S

content

High C (80%–85%), H

content

Low O content (below

30 wt % dmf)

High O content

Calorific value Low High NS NS

Coal reactivity High Low

Proximate

characteristics

High volatile matter content-

coking gas, low volatile

matter content-coke low

moisture and ash content

Low moisture and ash

content, high volatile

matter and fixed carbon

content

Low moisture and ash

content, 29.4%–57.1%

volatile matter content

NS

Inorganic matter

composition

Al2O3, SiO3 and alkalis lead to

poor coke quality

MgO, Fe2O3, SiO2, CaO,

Al2O3,TiO2 and alkali

compounds may react

with each other

Pyrite and amino-silicates

tends to act as catalysts

NS

Mineral matter

content

Low Low Low Low

Ash

characteristics

Low ash fusion temperatures Ash fusion temperatures

less than 1600 �C
NS NS

Caking

tendencies

Low Low NS NS

Grindability Grindability index of 80 NS NS NS

Coal fluidity NS NS NS High

Molecular weight

distribution

NS NS Formation of products with

stable high molecular

weight is undesirable

during liquefaction

Low content of low

molecular weight

compounds, uniform

molecular weight

distribution

Particle size NS Small sized Small sized NS

Note: NS means there was no available specification from the reviewed literature
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Fig. 1 Clusters of aromatic layers linked to the aliphatic structures (Ahamed et al. 2019)

Fig. 2 Carbon fibers from different precursor materials (Kim et al. 2016b; Yang et al. 2016)
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Fig. 3 Carbon fibers from Polyacrylonitrile precursor with 0% coal tar a, 25% coal tar b, 50% coal tar c (Modified after Zabihi et al. 2019)

Fig. 4 Carbon fibers from pyrolysis fuel oil with 100% coal tar a, 200% coal tar b, 300% coal tar c (Modified after Lee et al. 2019)

Fig. 5 Isotropic phase a, formation of mesophase in an isotropic phase b, anisotropic phase c (Modified after Huson 2017)
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Fig. 6 Main stages of maturity relating coal organic composition and rank (Singh and Mrityunjay 2018a)

Fig. 7 Aliphatic and aromatic carbon bonds in relation to carbon content a, bonding energies for major covalent bonds in coal b (Ahamed et al.

2019)
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Fig. 8 Fouling deposits on tubes in convective pass (Ma et al. 2007)

Fig. 9 Model used to determine coal utilization basing on vitrinite reflectance and percentage of reactive macerals (Singh et al. 2015; Singh and

Mrityunjay 2018b)
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