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Abstract Aiming at the poor location accuracy caused by the harsh and complex underground environment, long strip

roadway, limited wireless transmission and sparse anchor nodes, an underground location algorithm based on random

forest and compensation for environmental factors was proposed. Firstly, the underground wireless access point (AP)

network model and tunnel environment were analyzed, and the fingerprint location algorithm was built. And then the

Received Signal Strength (RSS) was analyzed by Kalman Filter algorithm in the offline sampling and real-time positioning

stage. Meanwhile, the target speed constraint condition was introduced to reduce the error caused by environmental factors.

The experimental results show that the proposed algorithm solves the problem of insufficient location accuracy and large

fluctuation affected by environment when the anchor nodes are sparse. At the same time, the average location accuracy

reaches three meters, which can satisfy the application of underground rescue, activity track playback, disaster monitoring

and positioning. It has high application value in complex underground environment.
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1 Introduction and problem statement

Safety has always been a hot issue in coal mines, which

accounts for 70% of the energy structure. It is estimated

that this situation will continue for the next 20 years. In

2018, 224 accidents and 333 deaths occurred in the coal

mines of China, including 2 major accidents with 34

deaths. The death rate per million tons of coal mines is

0.093, and the overall safety is developing well. In the safe

production and management of coal mines, it is very

important to master the number of underground personnel,

activity trajectory, precise location distribution and disaster

location monitoring in real time (Yang et al. 2010).

Moreover, in an event of accident, timely and accurate

rescue depends on high-precision positioning system

(Wang 2014). Therefore, the research on underground

location algorithm is very important (Hu et al. 2016).

The active areas of workers and locomotives are mainly

working-face and roadway. Compared with the transmis-

sion of wireless radio frequency signal on the ground, the

underground wireless transmission environment is more

complex (Hu et al. 2014). The present location technology

mainly includes Bluetooth, Radio Frequency Identification

(RFID), Wi-Fi, ZigBee, Ultra-Wide Band (UWB) and

ultrasonic (Peng and Wang 2014). However, the location

algorithm is mainly based on ranging algorithm and non-

ranging algorithm (Feng et al. 2015). For example, angle-

of-Arrival (AOA), Time of Arrival (TOA), Time Differ-

ence of Arrival (TDOA) (Ding et al. 2014) and Received

Signal Strength Indicator (RSSI)(Ding et al. 2013) are

ranging algorithm; DV- Hop(Qiao 2015), APIT and MDS-

MAP are non-ranging algorithm (Qiao et al. 2017). The

underground location in coal mine is different from the

ground location. That is because GPS cannot play a role in

underground, and the underground environment is complex
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and variable. Thus, the application of location algorithm in

underground mine is more difficult (Li and Zhang 2017).

Compared with other networks, Wi-Fi network has the

advantages of strong signal, wide bandwidth and fast

transmission rate (Sun 2013). In the underground coal

mine, the wireless local area networks (WLAN) basically

covers roadways and working faces, and no additional

network laying and installation equipment is required. By

adjusting the data transmission speed in real time, the

positioning response speed is accelerated, which greatly

meets the needs of personnel. It cannot only meet the needs

of personnel positioning, but also transmit real-time voice

and image. This is an inevitable trend of future wireless

network development (Zhang 2015). By studying the law

of electromagnetic wave propagation loss in coal mine

roadway, Wang Dongdong proposed an AP planning

method suitable for underground mines, which satisfies the

coverage of mobile terminal in WLAN communication

system of digital mine (Wang 2009). By studying the long

strip characteristics of roadways, Yang Cheng et al. pro-

posed a neural network interpolation algorithm based on

WLAN region division and a location algorithm based on

signal strength weight index (Yang and Feng 2013).

Compared with the traditional algorithm, the calculation

complexity and accuracy are improved. By establishing

dual WiFi channel and signal transmission-reception tim-

ing mode, Sun Jiping et al. proposed TOA underground

target location method based on time error suppression

(Sun and Li 2014). Wu Jingran et al. proposed an improved

fingerprint location algorithm, which was combined with

pedestrian track estimation (PDR) algorithm to realize the

location of underground personnel (Wu et al. 2018). By

analyzing the transmission loss model of roadways and

dynamically obtaining the path fading index, Han Dong-

sheng et al. proposed a weighted centroid location algo-

rithm based on RSSI (Han et al. 2013). Cui Lizhen used

Kernel function method and particle filter algorithm to

locate the underground target, and realized the tracking and

location of static and dynamic target (Cui et al. 2013).

However, underground radio wave transmission and

multi-path effect are limited, many air medium factors,

high humidity and high gas concentration have a great

influence on the attenuation of radio signals. Since many

scholars have done a lot of work, and there are still some

shortcomings:

(1) Some scholars directly use radio transmission model

for location, which has large error and cannot be

applied in coal mine.

(2) There is noise in the tunnel during wireless trans-

mission, and the unprocessed transmission signal

cannot be directly used for location calculation.

(3) There are all kinds of moving targets in coal mine,

such as locomotive and miner. Because of its

stable running speed, most scholars do not pay

attention to this and make use of it, resulting in the

lack of location accuracy.

(4) The existing fingerprint location algorithms are

inefficient, and usually do not consider the actual

AP distribution of roadway and off-line sampling

point interval on the location accuracy.

This paper proposes a new underground location algo-

rithm based on random forest and environmental factors

compensation. It aims to solve the problem of insufficient

location accuracy and large fluctuation affected by envi-

ronment when the anchor nodes are sparse, and provides a

reference for the application of high-precision location in

the future.

2 Ideas and organizational structure

2.1 Overall problem solution approach

In view of the current underground location, any single

location algorithm cannot meet the requirements of appli-

cation. In recent years, fingerprint location algorithm has

been widely used in indoor location, which aims to solve

the signal attenuation and multipath effect. Fingerprint

location algorithm is divided into offline sampling stage

and real-time positioning stage. In the real-time positioning

stage, the newly collected data need to be compared with

fingerprint database. Random forest is a fast and accurate

classification algorithm, which can improve the efficiency

of fingerprint location. Considering that the adjacent AP is

located in the same roadway environment, that is, its

attenuation factor is the same and the information of

moving target is included in collection, the signal intensity

ratio compensation model and speed constraint model are

proposed respectively to further optimize the location

accuracy.

The overall solution is as follows:

Step 1: Kalman filter algorithm is used to filter the signal

when receiving the signal.

Step 2: The fingerprint location algorithm is introduced,

and the fingerprint database of RSS and location

information is established by offline sampling.

Step 3: The coordinates of unknown nodes are given by

random forest algorithm.

Step 4: The signal intensity ratio compensation model is

introduced into the algorithm to optimize the positioning

results.
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Step 5: The speed constraint model is introduced into the

algorithm, and the results are modified periodically to

improve the positioning accuracy.

2.2 Organizational structure of this paper

This paper mainly studies the high-precision positioning

algorithm under the condition of transmission limitation,

multipath effect and signal attenuation. The first chap-

ter introduces the research background, positioning algo-

rithm, research status, existing problems, the goal of

realization and the solution adopted in this paper. The

second chapter gives the research ideas and structure of this

paper. The third chapter describes the theoretical basis of

Kalman filter and random forest, and gives the location

model. In the fourth chapter, the signal intensity ratio

compensation and speed constraint algorithm are proposed

to optimize the positioning results and the theoretical

model is given. In the fifth chapter, the influence of off-line

sampling interval on positioning accuracy is analyzed, and

the optimization of fingerprint location, signal intensity

ratio compensation and speed constraint is carried out. In

the sixth chapter, the conclusion is given and the possible

expansion in the future work is prospected.

3 Theoretical basis and location model based
on Kalman filter and random forest

3.1 Analysis of underground AP network

and roadway environment

3.1.1 Bridge networking model based on multi-AP

Underground roadways are usually several kilometers long

with T-shaped, L-shaped and cross-shaped intersections.

The multi-AP bridge network model is adopted shown as

Fig. 1. When wireless local area network (WLAN) is laid

in coal mine, the switching between AP, redundant AP and

network security should also be considered.

3.1.2 Roadway environment analysis

(1) Underground roadway and working face are narrow

and long tunnel-like enclosed limited space with

fixed height and width, variable length and irregular

shape. The environmental characteristics can be

summarized as follows: The roadway is a long strip

with limited radio transmission, usually up to several

kilometers long and only a few meters wide.

(2) Both sides of the roadway are coal and rock

structures, which are light dense medium. The roof

and floor have different degrees of concave and

convex, and electromagnetic wave refraction and

reflection are serious.

(3) There are many factors of air medium in roadway,

such as high humidity and high gas concentration,

which have great influence on radio signal

attenuation.

The signal received by WiFi terminal is generally a com-

posite wave after multiple reflection, scattering and

diffraction from multiple paths and directions. The multi-

path transmission model of multi-AP network in roadway

is shown in Fig. 2.

3.2 Kalman filter algorithm

Through the analysis in Sect. 2.1, there is noise in the

signal received by STA. In this paper, the noise is filtered

by Kalman filtering algorithm (Chen et al. 2015). The

received signal is treated as a discrete system without

control variables. It can be described as:

xðkÞ ¼ Axðk � 1Þ þ Buðk � 1Þ þ NðkÞ
zðkÞ ¼ HxðkÞ þ VðkÞ

where, xðkÞ is the received signal strength value filtered at

time k. When the control function uðk � 1Þ or process

excitation noise NðkÞ is zero, the n� n-order gain matrix A

linearly maps the state of the previous moment k � 1 to

that of the current moment k. A is the system parameter

with value 1. zðkÞ is the received signal strength value k

measured at time k. H is the system parameter with value 1.

Fig. 1 Bridge networking model for multi-AP

Fig. 2 Multipath transmission model of multi-AP network in

roadway
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It is assumed that the process excitation noise NðkÞ and the

observation noise VðkÞ are independent to each other and

obey the White Gaussian Noise. In practical systems, the

process-excited noise covariance Q and the observed noise

covariance R may change with each iteration, and they are

assumed to be constant.

Firstly, the process model of the system is used to pre-

dict its next state. Suppose that the current system state is k,

the state can be predicted according to the previous state of

the system:

xðkjk � 1Þ ¼ Axðk � 1jk � 1Þ

where, xðk � 1jk � 1Þ is the best result of previous state.

The covariance corresponding to xðkjk � 1Þ is represented
by P:

Pðkjk � 1Þ ¼ Pðk � 1jk � 1Þ þ Q

where, Pðkjk � 1Þ is the corresponding covariance of

xðkjk � 1Þ and Pðk � 1jk � 1Þ is the corresponding

covariance of xðk � 1jk � 1Þ. Combining the predicted

value with the measured value, the optimal estimation of

the current state xðkjkÞ is obtained:
xðkjkÞ ¼ xðkjk � 1Þ þ KgðkÞðzðkÞ � xðkjk � 1ÞÞ

where, KgðkÞ is the Kalman Gain of the current moment:

KgðkÞ ¼ Pðkjk � 1Þ
Pðkjk � 1Þ þ R

Update covariance xðkjkÞ in the update state k:

PðkjkÞ ¼ ðI � KgðKÞÞPðkjk � 1Þ

where, I is the Matrix of 1, and the value is 1.

The sampling is performed at a distance of 15 m from

the access point, once per second for 50 s. The filtering

results are shown in Fig. 3.

3.3 Fingerprint location algorithm based on random

forest (WIFI-RFFL)

Fingerprint mode localization technology mainly consists

of fingerprint training stage and real-time positioning stage.

(1) Fingerprint training stage

A database of the relationship between the location

of sampling points (fingerprints) and the correspond-

ing signal intensity is established. The sampling

points are set according to a certain interval distance

in the area to be detected. The signal intensity

measured at each sampling point and its correspond-

ing position is saved in the database to form a

fingerprint database.

(2) Real-time location stage

When a worker or device moves to a certain

location, the portable WiFi terminal on his body

compares the matching algorithm with the informa-

tion in the fingerprint database based on the signal

strength measured in real time to calculate the

terminal position.

In this paper, the random forest algorithm is used in the

prediction and classification of real-time positioning stage

(Breiman 2001; Li 2013). It is a combined classification

algorithm of ensemble learning. Based on the construction

of Bagging integration, the random attribute selection is

further introduced in the training of decision tree, and

bootstrap is used to put back the original data set. Several

samples are extracted and trained with weak classifier-de-

cision tree, and then these decision trees are grouped

together to get the final classification or prediction results

by voting, shown as Fig. 4.
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Fig. 3 Comparison results before and after Kalman filtering Fig. 4 Random forest algorithms
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The algorithm steps are as follows:

Step 1: Selection of sample set

Assuming that there are a total of N samples in the

original sample set, each round will extract N samples from

the original sample set through bootstraping (with

replacement sampling) to obtain a training set of size N,

and a total of n rounds of extraction will be performed. The

training sets of each round are T1, T2,…, Tn.

Step 2: Generation of decision tree

If there are D features in the feature space, D features

(d\D) are randomly selected from each feature to form a

new feature set in each round of decision tree generation.

New feature set is used to generate decision trees, and

n decision trees are generated in n rounds. For fingerprint

matching, all decision tree votes are used to determine the

final result.

Step 3: Models combination

Since n decision trees are random in the selection of

training set and feature and independent to each other, the

importance of each decision tree is equal. Therefore, they

can be considered to have the same weight when they are

combined.

Step 4: Model verification

The model verification needs a verification set. When

selecting the training set from the original samples, there

are some samples that have not been selected at one time.

When performing feature selection, there some features

may not be used, and the unused samples can be selected

from the original sample set as the verification set. The idea

of fingerprint location algorithm based on random forest as

follows: Firstly, the sampled signal is processed by Kalman

filter to form fingerprint database; the feature data of the

current positioning target is obtained in real time, and then

random forest is used for random forest prediction after

Kalman filtering processing; finally, the location informa-

tion of unknown nodes is obtained. The algorithm model is

shown in Fig. 5.

4 Fingerprint localization algorithm based
on signal intensity ratio and speed constraint
optimization

4.1 Signal intensity ratio compensation algorithms

(WIFI-RFFL-SIR)

In order to reduce the influence of narrow space of roadway

on radio frequency signal propagation, it is assumed that

the roadway environment of adjacent AP is the same. That

is, its attenuation factor is the same. In this paper, a signal

intensity ratio compensation algorithm is proposed to fur-

ther optimize the positioning results.

Assuming that multiple APs are deployed underground;

the two nearest APs are AP1 and AP2 according to RSS;

the coordinates are ðxAP1; yAP1Þ and ðxAP2; yAP2Þ; the coor-

dinates of the terminal are ðxt; ytÞ; the distance between

AP1 and AP2 is d; d1 and d2 are the distances from the

terminal to AP1 and AP2 respectively. Then there are:

Pðd1Þ ¼ Pðd0Þ þ 10g lg
d1
d0

� �
þ nd

Pðd2Þ ¼ Pðd0Þ þ 10g lg
d2
d0

� �
þ nd ð8Þ

Let R be the ratio of d1 and d2, then:

R ¼ d1
d2

¼ 10
pðd1Þ�pðd0Þ�nd

10g � d0

10
pðd2Þ�pðd0Þ�nd

10g � d0

¼ 10
pðd1Þ�pðd2Þ

10g ð9Þ

It can be obtained that:

d1 ¼
R

1þ R
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxAP1 � xtÞ2 þ ðyAP1 � ytÞ2

q

d2 ¼
R

1þ R
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxAP2 � xtÞ2 þ ðyAP2 � ytÞ2

q
8>><
>>:
xt ¼ xAP1 þ

R

1þ R
ðxAP2 � xAP1Þ

Similarly, the coordinate y can be obtained. The arith-

metic average coordinates of the terminal can be obtained

from the results of signal strength compensation ratio

algorithm and WIFI-RFFL algorithm ðxt; ytÞ:

xt ¼
xt þ xAP1 þ R

1þR ðxAP2 � xAP1Þ
2

yt ¼
yt þ yAP1 þ R

1þR ðyAP2 � yAP1Þ
2

8>><
>>:
4.2 Velocity-constrained localization algorithm (WIFI-

RFFL-SIR-VC)

The target of underground positioning is usually moving

miners and locomotives, and the speed parameters of

moving targets can be used as constraints. The normal

walking speed of underground people is generally less than

vp, and the speed of locomotives is less than vc. Meanwhile,

AP position coordinate correction is introduced, that is, that

error correction will be carried out every time when an AP

passes to reduce accumulated error. Ding Enjie et al. pre-

sented the relationship between RSS and communication

distance (Ding et al. 2013). It can be seen that in a certain

distance, RSS and communication distance are almost

linear. According to this characteristic, it is assumed that

the received signal strength value at the distance of AP 3 m

is RSSh. The speed constraint algorithm steps are as

follows:

1112 X. Qiao, F. Chang

123



(1) The RSS value of current terminal is obtained. If the

signal strength value of a certain AP among the

signal strength values of all AP s received by WiFi

terminal at a certain moment, the location coordinate

of the WiFi terminal is that of the AP.

xi ¼ xAP

yi ¼ yAP

(
;
RSSi ¼ maxðRSS1;RSS2; � � � ;RSSnÞ

RSSi �RSSh

ð13Þ

(2) If Step (1) is not satisfied, the terminal coordinates at

current time ðxt; ytÞ are calculated according to the

WIFI-RFFL-SIR algorithm.

(3) Calculate the distance dt t�1 between the current

time t and the last time t-1. If

dt t�1 \ = maxðvp; vcÞ � t, the current estimated

position coordinates of WiFi terminal are considered

to be authentic. On the contrary, according to the

speed constraints, it can be determined that the

current estimated position coordinates of the WiFi

terminal are not believable, then the current

unknown node coordinates ðxt; ytÞ can be expressed:

xt ¼
xt þ xt�1

2

yt ¼
yt þ yt�1

2

8><
>:

If it is not credible, proceed to Step (3). After n times of

comparisons, the position coordinates of WiFi terminal can

be expressed as follows:

xt ¼
xt þ ð2n � 1Þxt�1

2n

yt ¼
yt þ ð2n � 1Þyt�1

2n

8>><
>>:
5 Experimental analysis

In order to verify the location performance of the algo-

rithm, a location experiment is carried out in an air raid

shelter as shown in Fig. 6. The air-raid shelter is about

160 m long, 2.8 m wide and 3 m high. Other

Fig. 5 Fingerprint location algorithm model based on random forest

Fig. 6 Experimental environment
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environmental parameters are similar to those of under-

ground roadway. The length of the shelter is x axis, the

width is y axis, and the center of it at the entrance is the

coordinate origin. Assuming that the staff walk along the

middle line of AP layout, that is, the y-coordinate of the

terminal is always 0. The maximum speed of personnel

moving is 3 m/s. There is no locomotive in the air-raid

shelter, and the time interval of terminal reporting position

is 1 s.

5.1 Effect of offline sampling interval on positioning

accuracy

Two APS are laid in the air-raid shelter. Their coordinates

are AP1 (0, 1.4) and AP 2 (25, 1.4), and their heights are

1.2 m. In the fingerprint training stage, the staff holds WiFi

terminals based on Wireless SOC chip GS1011 to sample

and establish fingerprint database every 1, 2, 3 and 4 m,

respectively. Each sampling point continuously collects 60

received signal strength values, and the average value is

taken as the signal strength fingerprint. WIFI-RFFL is used

as the positioning algorithm (Table 1).

As shown in the Figs. 7 and 8, when the interval of

sampling points is 1 m and 2 m, the average positioning

errors are 0.62 and 0.66 respectively; the root mean square

positioning errors are 0.772 and 0.798 respectively. This is

because the smaller the interval between the sampling

points is, the more dense the sampling points are. This

makes the difference of signal strength fingerprints in the

sampling points very small and random forest fingerprints

difficult to match. The location error increases gradually

when the interval is more than 2 m. Therefore, the interval

between sampling points is set to 2 m in the follow-up test.

It cannot only ensure the positioning error, but also reduce

the workload of off-line sampling.

5.2 Experiment of fingerprint location in random

forest (WIFI-RFFL)

There are three APs in the air-raid shelter, whose coordi-

nates are AP1 (0, 1.4), AP2 (80, 1.4) and AP3 (160, 1.4)

respectively. The heights are 1.2 m. If the sampling inter-

val of fingerprint is 2 m, the maximum positioning error

can be predicted to be 1 m. Workers walk around the

shelter with WiFi based on wireless SOC chip GS1011.

Based on WIFI-RFFL algorithm, the signal intensity of AP

measured by WiFi terminal in real time is matched with the

fingerprint in database.

As shown in Fig. 9, due to the environmental factors in

the air-raid shelter, such as diffraction, reflection and

refraction, the positioning error of observation points

between 30–50 m is very large. The relationship between

RSS and distance is verified. When the distance is more

than 30 m, the RSS value does not change significantly

Table 1 Test results of positioning accuracy at different sampling intervals

Actual location of

staff

Location result of 1 m

interval

Location results of 2 m

intervals

Location results of 3 m

intervals

Location results of 4 m

intervals

(0,0) (0,0) (0,0) (0,0) (0,0)

(1.8,0) (2,0) (2,0) (3,0) (0,0)

(4.3,0) (5,0) (4,0) (3,0) (4,0)

(8.2,0) (7,0) (8,0) (6,0) (8,0)

(10.7,0) (12,0) (10,0) (9,0) (12,0)

(13.1,0) (14,0) (12,0) (12,0) (16,0)

(17.2,0) (18,0) (16,0) (15,0) (20,0)

(20.6,0) (22,0) (20,0) (18,0) (24,0)

(23.3,0) (24,0) (22,0) (21,0) (24,0)

(25,0) (25,0) (24,0) (24,0) (24,0)
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Fig. 7 Location error of terminal at different sampling intervals
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with the increase of distance, which leads to the increase of

error. The average positioning error of WIFI-RFFL algo-

rithm is 5 m.

5.3 Experiments on signal intensity ratio

compensation location algorithms (WIFI-RFFL-

SIR)

The AP deployment is consistent with Sect. 5.2, where

staff move around the shelter with WiFi based on wireless

SOC chip GS1011. According to WIFI-RFFL-SIR algo-

rithm, the signal intensity of AP measured by WiFi ter-

minal in real time is matched with the fingerprint in

database.

As shown in Fig. 10, after signal intensity compensa-

tion, the positioning errors of most nodes can be effectively

reduced, and the average positioning error is 4.25 m.

However, due to the continuous movement of the staff in

the air-raid shelter, there are still singular positioning

points with large errors. For example, the positioning error

at (42.8, 0) is 12.3 m.

5.4 Experiments on velocity constrained

compensation location algorithms (WIFI-RFFL-

SIR-VC)

The AP deployment is consistent with Sect. 5.2, where the

staff move around the shelter with WiFi based on wireless

SOC chip GS1011. According to WIFI-RFFL-SIR-VC

algorithm, the signal intensity of AP measured by WiFi

terminal in real time is matched with the fingerprint in

database.

As shown in Fig. 11, after the speed constraint, the

influence of each noise point on the average location error
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Fig. 8 Average positioning error and root mean square error
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Fig. 9 Location error of WIFI-RFFL algorithm
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Fig. 10 Location error of WIFI-RFFL-SIR algorithm

Underground location algorithm based on random forest and environmental factor compensation 1115

123



is weakened. At the same time, the terminal nodes are

corrected when passing AP. The overall positioning accu-

racy is high, and the average positioning accuracy is 3 m.

6 Conclusions

In this paper, an underground localization algorithm based

on random forest and environmental factors compensation

is proposed for the complex environment of underground

coal mine. The underground AP network model and

roadway environment is analyzed and a multi AP bridge

networking model is constructed under this algorithm. At

the same time, Kalman filter is introduced to weaken the

impact of noise, and the complexity of fingerprint matching

algorithm is reduced. It is showed that the proposed signal

intensity ratio compensation algorithm and speed con-

strained optimization algorithm further improves the

location accuracy and eliminate the influence of noise

points. Through all the experiments, the average location

error is 3 m, which satisfies the applications of under-

ground rescue, activity track playback, disaster monitoring

and location. However, due to the sparse AP, once the fault

greatly affects the location accuracy, blind spot location

will be the focus of future research.
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