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Abstract The present work aims at studying five Indian coals and their solvent extracted clean coal products using Py-

GCMS analysis and correlating the characterization data using theoretical principal component analysis. The pyrolysis

products of the original coals and the super clean coals were classified as mono-, di- and tri-aromatics, while other

prominent products that were obtained included cycloalkanes, n-alkanes, and alkenes ranging from C10–C29. The principal

component analysis is a dimensionality reduction technique that reduced the number of input variables in the character-

ization dataset and gave inferences on the relative composition of constituent compounds and functional groups and

structural insights based on scores and loading plots which were consistent with the experimental observations. ATR-FTIR

studies confirmed the reduced concentration of ash in the super clean coals and the presence of aromatics. The Py-GCMS

data and the ATR-FTIR spectra led to the conclusion that the super clean coals behaved similarly for both coking and non-

coking coals with high aromatic concentrations as compared to the raw coal. Neyveli lignite super clean coal was found to

show some structural similarity with the original coals, whereas the other super clean coals showed structural similarity

within themselves but not with their original coal samples confirming the selective action of the e,N solvent in solubilizing

the polycondensed aromatic structures in the coal samples.
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1 Introduction

Pyrolysis has been used to produce fuels and oils with high

energy density and low volatility. There are various reac-

tions involved in the pyrolysis of fossil fuels and biomass,

such as aromatization, hydrogen transfer, oligomerization,

and de-oxygenation. Many of these reactions produce

aromatics. The product slate formed during pyrolysis

includes liquid (oil), gases, water, char, and coke (Huber

et al. 2006). A variety of analytical techniques such as

Fluorescence Spectroscopy, Mass Spectrometry (MS),

High-Performance Liquid Chromatography (HPLC), and

Infrared Spectroscopy (IR) is typically used to analyze the

complex mixture of hydrocarbons formed and their derived

products (De Lira et al. 2010; Molina et al. 2010; Mullins

2010)

Solvent extraction of coal has been explored in the past

(Van Krevelen 1993; Sharma and Dhawan 2018). The

production of clean coal using various solvents has led to

the recovery of Super Clean Coals (SCCs), Ultra-Clean

Coals (UCCs), and Ultra-Super Clean Coals (U-SCCs) with

negligible or no ash content. Hypercoal production is a

recent development that uses two-ring aromatic solvents

like tetralin and 1-Methylnaphthalene (1-MN) with which

extraction of 70 wt% of bituminous coals is possible at

elevated temperatures and high pressures (Okuyama et al.

2004; Masayuki et al. 2011). Solvent extraction of coals

and the analysis of their clean products through pyrolysis
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and Py-GCMS is an area gaining in importance (Fujitsuka

et al. 2013; Yan et al. 2014; Zhang et al. 2016). Thermo-

gravimetric analysis (TG) and Fourier Transform Infrared

(FTIR) analysis of evolved products have also been suc-

cessfully used to characterize heavy hydrocarbons, rocks,

coals, biomass, waste materials, plastics, etc. FTIR pro-

vides insights into the pyrolysis of coals, including the

kinetics of functional-group decomposition. The elements

and functional groups of coal tar closely resemble coal and

typical macromolecular debris of coal. Therefore, methods

typically applied to coal analysis can reveal information

about the composition of heavy hydrocarbon liquids.

Pyrolysis reactions are complex and require a better

understanding through the study of reaction networks,

kinetics and mechanisms. In this context, Py-GCMS is a

particularly useful analytical method and can be used semi-

quantitatively to identify volatile products. The coal tar

generated can prove to be a valuable product to derive

much useful information. Coal tar contains chemical

compounds that are very valuable commercially and

industrially. These include aromatic compounds (benzene,

toluene, xylene, naphthalene, anthracene, etc.), phenolic

compounds (phenol, cresol, xylenol, cathecol, resorcinol,

etc.), heterocyclic nitrogen compounds (pyridine, quino-

lone, isoquinoline, indole, etc.) and oxygen heterocyclic

compounds (Fardhyanti 2015). The composition of coal tar

varies with its origin and type of coal (for example lignite,

bituminous coal, or anthracite) used in its production.

Therefore, a more advanced data analysis technique could

reveal more insights from the experimental data sets. In

this work, we employ a combination of Principal Compo-

nent Analysis (PCA) and Gaussian Mixture Modeling

(GMM) for detailed data analysis and further categoriza-

tion of these compounds.

PCA is a statistical analysis that helps to study and

categorize many possibly interrelated parameters into a

small number of uncorrelated variables called principal

components. This technique is instrumental in extracting

relevant inferences from complex data sets as it reduces a

large set of variables into a smaller set without significant

loss of the information. Indeed, PCA is a widely used

technique for analyzing multivariate Py-GC/MS data

(Meier et al. 2005; Schwarzinger 2005; Pattiya et al. 2010).

PCA has also been used to characterize and classify several

coals based on the differences in their properties, such as

particle size, density, and ash contents (Niedoba 2014). A

database for 44 brown coals has been studied extensively

by Tesch and Otto (1995) to derive co-relations between

several chemical, technological, and IR spectroscopic

parameters. The principal component analysis helped

explain the data and categorize the coals. Additional

components were required to be included to derive more

information from the data. Three Canadian coals, upgraded

through evaporative drying up to 500 �C, were studied by

Friesen and Ogunsola using PCA (Friesen and Ogunsola

1994). The lignite showed variation in its tar structure

above 400 �C, whereas other two bituminous and sub-bi-

tuminous coals above 300 �C. No significant difference

was found in the structure of the upgraded coals as com-

pared to the original coals.

In the present study, PCA analysis was applied to

identify, categorize and compare the data sets of five

original coals (OCs) and their SCCs. PCA analysis was

used to study the statistical nature and the relative con-

centrations of the aromatics, aliphatics, alkenes, etc.,

formed during the original coals’ pyrolysis and was used to

compare them with their solvent extracted clean products.

GMM (Gaussian Mixture Model) algorithm was used along

with PCA for identification and quantitative characteriza-

tion of clusters in the plot. It facilitates better visualization

of the spread of samples in space and statistical analysis of

local features in the data.

2 Experiment

2.1 Samples and geological setting

Five Indian coal samples—Bhagabandh coal, Moonidih

coal, Pandra coal, Bahula coal, Neyveli Lignite—were

procured from NTPC power station, New Delhi, and the

Ministry of Coal, Govt. of India. Neyveli lignite was pro-

cured from Neyveli Lignite Corporation. Tables S1 and S2

(in Supplementary data) show the proximate and ultimate

analysis of the samples. The samples were dried and

extracted with N-methyl pyrrolidone and a small amount of

ethylenediamine. The procedure reported by Dhawan and

Sharma (2019) was used to recover the SCCs. The

extraction yields of the coals and the ash contents in the

SCCs are given in Table S3 (in Supplementary data)

(Fig. 1).

2.2 ATIR-FTIR spectra

The ATR-FTIR spectral analysis of the raw (OC), residual

coal (left after the SCC extraction), and SCC was per-

formed using Nicolet 6700 Infra-Red Spectrometer. ATR-

FTIR spectra were recorded in the range 4000–600 cm-1

using a Ge crystal with a resolution of 4 cm-1 with 32

scans (Odeh 2015; Dhawan and Sharma 2019).

2.3 Py-GCMS analysis

Py-GCMS experiments were performed using a Pyroprobe

Model 5200 (CDS Analytical, Inc.) connected to an Agi-

lent 7890 GC with an Agilent 5975C MS detector. The
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pyroprobe was run in trap mode under He atmosphere.

Pyrolysis was conducted at 650 �C (1000 �C/s heating rate)

for 20 s. The valve oven and transfer lines were maintained

at 325 �C. The column used in the GC was a DB1701 (60

m90.25 mm90.25 lm), and the temperature program was

as follows: 45 �C for 3 min, ramp to 280 �C at 4 �C/min,

and hold for 10 min. The flow rate was set to 1 mL/min

using He as the carrier gas. The inlet and auxiliary lines

were maintained at 300 �C, and the MS source was set at

70 eV. The GC-MS was calibrated for several phenolic

compounds including phenol, 2-methoxyphenol, 2-meth-

oxy-4-methylphenol, 2,6-dimethoxyphenol, vanillin, syr-

inge aldehyde, and 2-methoxy-4-vinylphenol. Pyrolysis

products were analyzed according to retention times and

mass spectra data obtained from a NIST library.

One milligram of the ground (45–150 lm) coal (raw and

SCCs) was analyzed in a quartz cell packed with quartz

wool. Samples were heated to 100 �C for 10 s in the probe

before analysis to remove any residual water. Prior to

sample analysis, blank experiments were performed to

Fig. 1 Location of coal samples illustrated on map of India
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validate the cleanliness of the system. After sample anal-

ysis, methanol was run as a sample to remove any con-

densed products inside the pyroprobe. Methanol and blank

experiments were repeated as necessary until the system

was clean (Harman-Ware et al. 2015). All experiments

were performed 3 times, and the average values were

reported.

2.4 Data analysis

Principal Component Analysis was carried out using

MATLAB’s Statistics and Machine Learning Toolbox.

After clubbing compounds into groups of aromatics and

aliphatics, PCA was carried out with the sum of peak area

percentages of compounds (belonging to that particular

group) as variables/dimensions for the ten coal samples-

five original (OC) and five supercleaned (SCCs). A par-

ticular type of coal, say Neyveli lignite, would have its own

original and super cleaned variants. The principal compo-

nents were obtained by Eigen Value decomposition of the

data covariance matrix. The principal subspace is defined

by the Eigen Vectors corresponding to the largest Eigen

Values retained. Here, the data is presented with two

principal components (PC1 and PC2), and thus, the effec-

tive dimensionality of data gets reduced to two. Scores and

Loadings plot are referred together to analyze the results,

with the former depicting the relative position of samples

on the plane with PC1 and PC2 as abscissa and ordinate,

respectively. GMM algorithm was used for determining

cluster characteristics, i.e., cluster mean and covariance

matrix. It was used to identify the clusters of super cleaned

and original coals on the 2D plane with PC1 and PC2 as

axes. Contour plots represent the stretch of clusters and the

spread of data points inside them.

3 Results and discussions

3.1 ATR-FTIR spectra analysis

ATR-FTIR spectra for all coal samples verified the PCA

analysis. Bands present between 1100 and 600 cm-1 cor-

respond to mineral matter such as illite, montmonrollite,

quartz, and aluminosilicates. The band specifically around

1030 cm-1 shows the presence of Si–O bonds (ash) in the

system. The raw coal and residue clearly show the presence

of ash, whereas the intensity of the band around 1030 cm-1

diminishes in the SCCs (Balachandran 2014). The aromatic

absorption bands at 750 and 815 cm-1 in the raw coals and

the SCCs are due to out-of-plane vibrations of one isolated

and two adjacent C–H aromatic groups, respectively

(Table 1). The spectra of the SCCs showed one such aro-

matic band at 750 cm-1. Absorption bands at 1600 cm-1 in

SCCs are attributed to the presence of C=C stretching

accentuated due to H-bond containing functional groups

(Table 1) (Cooke et al. 1986). These aromatic bands were

more intense in SCCs, showing effective action of the e,N

solvent in coal cleaning (Sun et al. 2011). Pandra coal

shows an increase in aromatics, especially triaromatics

while, Bhagabandh shows an increase in diaromatics and

triaromatics, which was also evident by the increase in the

Har/Hali ratio.

3.2 Py-GCMS and PCA of OCs and SCCs

3.2.1 Py-GCMS

Py-GCMS studies were performed for the five coals and

their solvent extracted SCCs. The basic characterization of

these coals (Elemental, proximate analysis, TG curve) is

already reported by the authors (experimentalists in this

group, Dhawan et al.) in a previously published work

(Sharma et al. 2019).

Each sample gave rise to more than 50 identifiable

chemical compounds during pyrolysis. The compounds

were categorized according to triaromatics, diaromatics,

monoaromatics, cycloalkanes, n-alkanes, alkenes, and

other structures based on matches with the NIST mass

spectral library. The main aliphatic compounds present in

the coal tar (i.e., pyrolysis vapor) were paraffin hydrocar-

bons, while the main aromatic components were

monoaromatics such as benzene, toluene, o-xylene, phe-

nols, and substituted phenols. Polycyclic aromatic hydro-

carbons (PAHs) that were identified included naphthalene,

substituted naphthalenes, phenanthrene, substituted

phenanthrenes, anthracene, pyrene, etc., with naphthalene

and its derivatives constituting the main constituents. The

coal tar also contained some oxygen compounds, such as

acids, and small amounts of aromatics containing nitrogen

(Makan et al. 2017).

The mass spectra of the whole sample (OCs and SCCs)

pyrolysis vapors show a complex series of ions ranging

from m/z = 100 to m/z = 450, indicating the presence of

polyaromatics such as fluoranthene and pyrene. Other

significant products that were obtained through the analysis

of the NL OC were methylpyrenes (m/z = 216), methyl

phenol (m/z = 220), toluene (m/z = 92), and in NL SCC,

high intensity of m/z = 220 and higher alkenes was

observed.

An intense anthracene signal (m/z = 178) was observed

for Pandra SCC while the product mixture from Pandra OC

was mainly dominated by alkanes and alkenes (Fig. 2). An

intense signal corresponding to o-xylene (m/z = 106) was

observed in the case of both Moonidih OC and SCC

(Fig. 3). Alkane peaks from C17 to C28 are observed at the

end of the chromatogram. The narrow peaks (for C17 to
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C28 alkanes and alkenes) vary from coal to coal, showing

higher intensity in the case of high ash Pandra coal and low

intensity in the case of low ash Bhagabandh and Moonidih

coals (Figs. 2, 3). Toluene was found to be a major product

from Bahula OC. Indeed, in general, the OCs were found to

be good sources of monoaromatics such as benzene,

toluene, and o-xylene (Islas et al. 2000).

The average aromatic content in the Moonidih OC was

found to be marginally higher than the corresponding SCC

(Fig. 3). In the case of the other four coals studied—Pandra

coal (high ash non-coking coal), Bahula coal (high ash non-

coking coal), Bhagabandh coal (low ash coking coal), and

Neyveli lignite (low ash lignite), the average content of the

aromatics in SCCs as compared to OCs is higher than the

aliphatics. Aromatics larger than naphthalene could have

been formed from char or other non-volatile products

during the pyrolysis process or through numerous reactions

involving alkylated derivatives (Sharma et al. 2019).

As explained by Radenovic (2006), the pyrolysis con-

ditions result in the formation of free radicals via the

cleavage of associations between the primary and sec-

ondary units of the condensed polyaromatic coal macro-

molecular network.

The SCCs obtained were found to have more volatile

matter (VM) and easily degradable units than the OCs,

resulting in increased tar formation from the SCCs. The

various reactions that result in tar formation include

depolymerization, dehydrogenation, decarboxylation,

hydrogenation, and the stabilization of the heavyweight

compounds obtained through secondary cracking reactions

from the primary structure of coal. Thus, some information

could be derived about the action of the e,N solvent system

(NMP containing a small amount of EDA) studied through

the Py-GCMS analysis of the samples. NMP, a polar

diprotic solvent that has a good affinity for aromatics, is

widely used in petroleum refineries. EDA has been found

to be a good coal swelling and extracting solvent through

the breaking of hydrogen bonds (Pande 2000; Pande and

Sharma 2001, 2002). The synergistic action of the two

solvents when used together, i.e., EDA, that cleaves the

Fig. 2 Pyrograms of Pandra a OC and b SCC (Sharma et al. 2019)

Fig. 3 Pyrograms of Moonidih a OC and b SCC (Sharma et al. 2019)
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H-bonds and NMP, extracts aromatics, and leaves SCCs

with negligible ash content. Figure 4 summarizes the dif-

ferent compounds obtained from the OCs and SCCs. The

highest amounts of mono-aromatics were obtained from

the Bahula and Moonidih coals (both OC and SCC). NL

OC gave mono-aromatics and alkenes predominantly,

whereas NL SCC afforded relatively more n-alkanes and

alkenes. The amounts of mono-, di- and tri-aromatics

obtained during pyrolysis of the Bhagabandh SCC was

relatively high as compared to the other coals (OCs and

SCCs), indicating the effectiveness of the e,N solvent in

extracting aromatics from this sample. Bhagabandh gave

the highest extraction yield of all the coals. Based on these

results, these coals and their SCCs could constitute a good

source for the recovery of mono-aromatics such as ben-

zene, toluene, xylene, and other substituted aromatic

compounds.

When the area % of the five categories of the com-

pounds were compared for their composition for coking

coal (Moonidih coal) and non-coking high ash coal (Pandra

coal), it was observed that the ash contents and the coking

characteristics of coals affect the formation of certain coal

macromolecules (Fig. 5a, b). The SCC (Fig. 5b obtained

from the extraction of a coking coal Moonidih shows more

monoaromatic content, whereas from the non-coking

Pandra coal shows more alkenes. The tars of the SCCs

obtained through the e,N solvent system show that the e,N

extraction was largely aimed at the extraction of the

specific moieties in coal; earlier studies have shown that

the SCCs of the non-coking coals showed coking behavior

extending their applicability in the steel industries (Pande

2000). Thus, the solvent extraction of the coals was found

to enhance their coking properties by removing mono-

aromatics and certain triaromatics, i.e., the use of mixed

solvents may improve the coking properties of coal as well

as significantly reducing the ash content.

3.2.2 PCA analysis

PCA was carried out for the OCs and SCCs of the five

coals to identify structural similarities and differences

between the samples before and after solvent extraction.

Additionally, through PCA analysis, it was possible to

detect zones showing variability in the data and detect any

outliers/abnormalities (Melendez et al. 2012). PCA was

performed with coal samples as samples (rows) and com-

pound groups/compounds as features/variables (columns).

Principal Component 1 (PC1) with an Eigen Vector cor-

responding to the largest Eigen Value of 354.35 captured

61.88% of the variance in the data. Similarly, Principal

Component 2 (PC2) with an Eigen Vector corresponding to

the second largest Eigen Value of 120.31 captures 21.01%

of the variance in the data. Thus, the samples were repre-

sented on a 2D dimensional plane to visualize the spatial

distribution relative to each other with axes PC1 and PC2

capturing a total of 82.89% of the variation in the data,

when total peak area corresponding to compounds grouped

as in Fig. 4, were considered as features. The loadings plot

represents the weight coefficient of each compound group,

denoting the contribution of original features (dimensions)

to the directions of principal axes of variation in data

(Principal Components/Eigen Vectors).

In Fig. 6b, n-alkanes and n-alkenes make the major

contribution to PC1 in the positive direction, and the other

compounds as a whole make significant contributions in

the negative direction. Aromatic compounds have smaller

weights than alkanes, alkenes, and other compounds, and

they contribute to the negative side of PC1. Cycloalkanes

lie close to the origin and have a small contribution in the

positive PC1 direction. Aromatics have predominant con-

tributions to PC2, with monoaromatic compounds having a

high positive weight and diaromatics, triaromatics having

negative weights. Alkenes and alkanes have smaller con-

tributions in PC2 than aromatics, with nearly equal weights

but in opposite directions, i.e., positive and negative PC2,

respectively. The original coals cluster together on the

positive side of the PC1 axis, whereas the super clean

counterparts are spread on the negative side of PC1 except

for Neyveli Lignite SCC, which shows significant simi-

larity to the original coals in the direction of maximum

variance in the data.

After removing Neyveli lignite from the analysis, in the

scores plot, Fig. 7a, the SCCs of Bahula, Moonidih,

Bhagabandh, and Pandra flip to the positive side of the PC1

in a pattern that is almost a mirror image about the PC2

axis. Since in the loadings plot, the n-alkanes, n-alkenes,

monoaromatics, and others have flipped to opposite sides

Fig. 4 Area (%) of the different compounds (y axis) in the tars of

OCs and SCCs (1-NL OC, 2-NL SCC, 3-Moonidih OC, 4-Moonidih

SCC, 5-Pandra OC, 6-Pandra SCC, 7-Bahula OC, 8-Bahula SCC,

9-Bhagabandh OC, 10- Bhagabandh SCC)
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too, the nature of the PC1 axis and its distinguishing

characteristics based on the relative composition of sam-

ples is retained. The PC2 axis is still composed of the high

positive weight of monoaromatics and negative weights of

diaromatics and triaromatics. Diaromatics and triaromatics

now have negligible loadings on PC1, and hence the

specificity of PC2 increases and its nature is retained. Fig. 7

would be considered for further analysis.

PC1 distinguishes samples based on aliphatic and

monoaromatics content, whereas PC2 primarily differen-

tiates samples based on aromatic content. Original coals

have negative scores on PC1 and thus have high aliphatic

content, comprising n-alkanes, n-alkenes, and cycloalka-

nes, as compared to solvent extracted super cleaned

counterparts. For all samples, the major shift on PC1 as

compared to a mild shift in PC2 scores supports the con-

clusions drawn by Sharma et al. (2019). The general trend

of decrease in Aliphatic/Aromatic content scores post e,N

solvent extraction for both non-coking high ash and coking

low ash coals. Intense aromatics bands in SCCs signifying

an increase in aromatics, as pointed out in ATR FTIR

analysis of samples, can be observed from the fact that

Fig. 5 Pyrolysis product comparison for a coking and non-coking OC b coking and non-coking SCC

Fig. 6 Principal Component Scores Plot a and Loadings Plot b for Indian coals (OCs and SCCs)
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monoaromatics have a positive loading on PC1 and coals’

super cleaned samples having a higher negative PC2 score

(shift towards more di- and triaromatics content) as com-

pared to their original ones (Dhawan and Sharma 2019).

This transformation was found to be more pronounced for

non-coking coals, i.e., Bahula and Pandra Coals, for which

average aromatic content increases and all other aromatic

groups, as reported by Sharma et al. (2019). A significant

increase in triaromatics content of Pandra Coal post solvent

extraction was the highlight amongst these trends.

A total of 91 compounds can be identified through Py-

GCMS of all samples together. The loadings and scores

plot when PCA was done without clubbing compounds into

groups is presented in Fig. 8. Compounds having loadings

more than 0.1 on either PC1 or PC2 have been labeled, as

their loadings are considered significant. Original and super

cleaned coals form clear, distinct clusters on negative and

positive halves of PC1, respectively. All compound plots

were found to be consistent with the analysis drawn from

grouped compound plots, although specific deductions are

difficult to make, given the large number of weights rep-

resented in the loadings plot yet, in PC2, which comprises

of significant loadings from both aromatics and aliphatic

compounds, the distinguishing characteristics are not

retained with both effects balancing each other making

respective clean samples almost parallel to their raw ones.

However, Bahula coals with a significantly high content of

phenols have been clearly highlighted. For low ash coking

coal Moonidih, having the highest content of polyaromatic

structures, total aromatics content has been reported to be

compared before and after solvent extraction, whereas a

distinct increase in other structural units like pyrrolidinones

makes it super cleaned sample acquire high positive score

on PC1.

3.2.3 Gaussian contour plots

As observed in Fig. 9, both contours are independent. The

clusters are well separated, and thus, the shape of mixture

contours does not differ much from the component con-

tours, given that the weights (number of sample points) are

comparable. Both SCCs and OCs are positively correlated

(ellipsoidal shape tilted to the right), and their PC1 and

PC2 scores co-vary in the given 2D plane. A positive

correlation implies that for both OCs and SCCs, as the

positive score increases in the PC1 axis, the positive score

in PC2 increases. Moonidih, Bhagabandh, and Pandra OCs

lie on the same contour curve and have the same proba-

bility density value. They belong to the original coals

cluster under the same confidence limits.

4 Conclusions

Analytical pyrolysis results provide insights into the

macromolecular structure of both coking and non-coking

Indian original coals (OCs) and the selective action of the

e,N solvent system, which produces products (SCCs) with

Fig. 7 Scores plot a and Loadings plot b excluding the Neyveli Lignite

1512 A. Roy et al.
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improved coking properties and greatly reduced ash con-

tent. These coals could act as good sources for monoaro-

matics production such as benzene, toluene, phenol, and

substituted phenols, which have a wide array of industrial

applications. Extensive Py-GCMS data analysis using PCA

was performed on coal samples from five different Indian

coal seams, namely, Pandra, Bahula, Moonidih, Bhaga-

bandh, and Neyveli lignite and their corresponding SCCs.

It primarily featured Scores and Loadings plots which

expedited analysis of these samples based on the relative

composition of constituent compounds through an accurate

but compact visualization. This analysis of samples’

constituent compounds, initially, by categorizing based on

various hydrocarbon classes, and later, based on individual

compounds, was coherent and signified consistency of the

mathematical formulation. The OCs and SCCs cluster on

either side of the PC2 axis, except for NL-SCC, shows

structural similarity to the OCs. Neyveli-Lignite has more

volatile matter and moisture content and relatively lower

ash content (5.2%) compared to the other coal samples,

which may be attributed to its varied behavior from the

other cluster of samples. Cluster characteristics and contour

orientation were determined using the GMM algorithm.

ATR-FTIR supported the inferences drawn from the Py-

GCMS and PCA studies, showing the enhanced intensity of

the aromatic bands in the SCCs as compared to OCs.

Analysis of the ATR-FTIR spectra further led to the con-

clusion that the SCCs behave similarly for both coking and

non-coking coals, verifying the selective action of the e,N

solvent system on the polycondensed aromatic structures in

the coals. Moonidih coal and its SCC were found to have

the highest total content of aromatics.

Supplementary InformationThe online version contains

supplementary material available at https://doi.org/10.1007/s40789-

021-00457-x.

Acknowledgements The authors Sreedevi Upadhyayula acknowl-

edges funding (Grant No. TMD/CERI/MDME/2017/001(G)) from the

Department of Science and Technology, New Delhi, India. Dr. Heena

Dhawan is thankful to Prof. D.K. Sharma, Retired Professor of Centre

for Energy Studies, IIT Delhi for his help with the coal samples and

continuous guidance through the work and Prof. M. Crocker and T.

Morgan, Center for Applied Energy Research, University of Ken-

tucky, Lexington, KY 40511, USA for the Py-GCMS analysis.

Fig. 8 PCA Scores Plot a and Loadings Plot b including all compounds (Blue Asterix—Alkanes; Red Plus-CycloAlkanes; Green Cross –

Alkenes; Yellow Dot-Monoaromatics; Black Squares -Diaromatics; Cyan Diamonds- Triaromatics; Magenta Triangle-Others

Fig. 9 Gaussian contour plot (excluding Neyveli lignite samples)

Insights from principal component analysis applied to Py-GCMS study… 1513

123

https://doi.org/10.1007/s40789-021-00457-x
https://doi.org/10.1007/s40789-021-00457-x


Author contributions Abyansh: Visualization, Data analysis; Writ-

ing- Original draft preparation; Heena: Experimental Investigation,

Data curation; Kondamana: Conceptualization; Supervision,

Reviewing; Sreedevi Upadhyayula: Conceptualization, Methodology,

Supervision, Reviewing and Editing.

Funding Grant No. TMD/CERI/MDME/2017/001(G) from the

Department of Science and Technology, New Delhi, India.

Conflict of interest The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Balachandran M (2014) Role of infrared spectroscopy in coal

analysis—an investigation. Am J Anal Chem 5:367–372

Cooke NE, Fuller OM, Gaikwad RP (1986) FT-ir spectroscopic

analysis of coals and coal extracts. Fuel 65:1254–1260

De Lira LFB, De Vasconcelos FVC, Pereira CF et al (2010)

Prediction of properties of diesel/biodiesel blends by infrared

spectroscopy and multivariate calibration. Fuel 89:405–409

Dhawan H, Sharma DK (2019) Refining of Indian coals to obtain

super clean coals having insignificant amounts of deleterious

elements under milder conditions. Miner Process Extr Metall,

pp 1–12

Fardhyanti DS (2015) Analysis of coal tar compositions produced

from sub-bituminous kalimantan coal tar. Int J Chem Mol Eng

9:1022–1025

Friesen WI, Ogunsola OI (1994) Principal component analysis of

upgraded Western Canadian coals. Fuel Process Technol

38:139–151

Fujitsuka H, Ashida R, Miura K (2013) Upgrading and dewatering of

low rank coals through solvent treatment at around 350 C and

low temperature oxygen reactivity of the treated coals. Fuel

114:16–20

Harman-Ware AE, Crocker M, Pace RB et al (2015) Characterization

of endocarp biomass and extracted lignin using pyrolysis and

spectroscopic methods. BioEnergy Res 8:350–368

Huber GW, Iborra S, Corma A (2006) Synthesis of transportation

fuels from biomass: chemistry, catalysts, and engineering. Chem

Rev 106:4044–4098

Islas CA, Suelves I, Carter JF et al (2000) Pyrolysis-gas chromatog-

raphy/mass spectrometry of a coal extract and its fractions

separated by planar chromatography: correlation of structural

features with molecular mass. Rapid Commun Mass Spectrom

14:1766–1782

Makan SR, Alexander JA, Solomon RA et al (2017) Physicochemical

characterization of coal tar produced by pyrolysis of coal from

Garin Maiganga and Shankodi deposits. J Miner Mater Charact

Eng 5:288–297

Masayuki S, Masanori Y, Kensuke K, Kiyotaka T (2011) Reduction

of GHG emissions by ash free coal utilization. Int J Sustain

Energy Inst 1:22–30

Meier D, Fortmann I, Odermatt J, Faix O (2005) Discrimination of

genetically modified poplar clones by analytical pyrolysis–gas

chromatography and principal component analysis. J Anal Appl

Pyrolysis 74:129–137

Melendez LV, Lache A, Orrego-Ruiz JA et al (2012) Prediction of the

SARA analysis of Colombian crude oils using ATR–FTIR

spectroscopy and chemometric methods. J Pet Sci Eng 90:56–60

Molina D, Uribe UN, Murgich J (2010) Correlations between SARA

fractions and physicochemical properties with 1H NMR spectra

of vacuum residues from Colombian crude oils. Fuel 89:185–192

Mullins OC (2010) The modified Yen model. Energy Fuels

24:2179–2207

Niedoba T (2014) Multi-parameter data visualization by means of

principal component analysis (PCA) in qualitative evaluation of

various coal types. Physicochem Probl Miner Process

50:575–589

Odeh AO (2015) Oualitative and quantitative ATR-FTIR analysis and

its application to coal char of different ranks. J Fuel Chem

Technol 43:129–137

Okuyama N, Komatsu N, Shigehisa T et al (2004) Hyper-coal process

to produce the ash-free coal. Fuel Process Technol 85:947–967

Pande S (2000) Studies on Ethylenediamine assisted N-Methyl-

2pyrrolidone extraction of coal scale up of the process and

utilization of the super clean coal obtained

Pande S, Sharma DK (2001) Studies of kinetics of diffusion of

N-methyl-2-pyrrolidone (NMP), ethylenediamine (EDA), and

NMP? EDA (1: 1, vol/vol) mixed solvent system in Chinakuri

coal by solvent swelling techniques. Energy Fuels 15:1063–1068

Pande S, Sharma DK (2002) Ethylenediamine-assisted solvent

extraction of coal in N-methyl-2-pyrrolidone: synergistic effect

of ethylenediamine on extraction of coal in N-methyl-2-pyrroli-

done. Energy Fuels 16:194–204

Pattiya A, Titiloye JO, Bridgwater AV (2010) Evaluation of catalytic

pyrolysis of cassava rhizome by principal component analysis.

Fuel 89:244–253
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