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Abstract
Underground mining can produce subsidence, which can be coincident with mining activities or delayed in response to the 
time-dependent deformation of the rocks. Therefore, in these cases, it is essential to effectively monitor the soil deformations 
at different times during and after mining activity. In the present work, an integrated approach based on geotechnical numeri-
cal modeling and Advanced Differential Interferometric Synthetic Aperture Radar (A-DInSAR) method has been applied 
to detect, study and monitor the subsidence related to mining activity in the Nuraxi Figus coal district (Sardinia, Italy). Two 
datasets of high-resolution COSMO-Skymed images were acquired, respectively in two covering periods: from 2011 and 
2014, and from 2013 to 2020. The A-DInSAR results show that the predominant displacement rates are located in correspond-
ence with the panels. The cumulated satellite-based LoS displacements vary in the first period between − 130 and + 28 mm 
and − 293 and + 28.4 mm, while, during the second period between − 6.9 and + 1.6 mm and − 8.72 and + 4.33 mm in ascend-
ing and descending geometries, respectively. The geotechnical numerical model allowed to obtain a value for the maximum 
expected. By using the vertical and horizontal components it was possible to reconstruct the kinematics of the deformation 
considering three phases: pre-mining, syn-mining, and post-mining activity. The temporal evolution of displacements started 
during the mining extraction in 2011, achieved the major values in correspondence of post-mining operations, during the 
period from 2013 to 2014 and continued slowly until 2020. The near real-time monitoring system applied in this study proved 
to be very useful for detecting subsidence during the mining activity and the post-mining period.
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1 Introduction

Mining and mineral extraction is useful for human develop-
ment, social progression, and material prosperity. However, 
these activities strongly interact with surrounding environ-
ments and could produce meaningful negative effects, on 
the atmosphere, soil, and water (Bell et al. 2000). One of 
the main issues in many parts of the world is represented by 

the subsidence induced by underground mining (Villegas 
et al. 2011; Zhou et al. 2015; Przyłucka et al. 2015a, b; Vu 
Khac et al. 2021). Such effects are more harmful when the 
activities legal or not authorized are in correspondence or 
nearby urban areas (Bell et al. 2005; Prakash et al. 2010; Ji 
et al. 2011; Villegas et al. 2011; Marschalko et al. 2012). 
Subsidence can either coincide with mining activities or 
be delayed in response to the time-dependent deformation 
of rocks. Several studies determined the rate of expected 
subsidence employing physical or numerical modeling and 
analysis (Whittaker 1989; Singh et al. 1998; Alheib et al. 
2001; Ye et al. 2016; Xie et al. 2020; Gazzola et al. 2021). In 
any case, to avoid possible environmental harm it is impor-
tant to monitor areas subjected to underground mining activ-
ity. Mining-related subsidence is usually analyzed either by 
in-situ measurements, or by aerial photographs on specific 
sites (Armenakis 1983). As far as in-situ survey techniques 
concerns, they consist of: piezometers, useful to register 
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pore pressure variations of the overburden strata (Guo et al. 
2012); extensometers installed at different heights in bore-
holes located above the exploited panels: in this way, settl-
ments are measured (Holla et al. 2000); and GNSS technique 
with benefits of accuracy and simultaneous 3-D positioning 
(Chen et al. 2014). However, these techniques are tedious 
and time-consuming, with small area coverage. Indeed, they 
have a cost of implementation that is significantly expensive 
for the management and the acquisition of information on 
large spatial and temporal scales of the entire mining area, 
thus providing localised and not distributed results.

Due to these limitations, remote sensing can be a cost-
effective technique. Specifically, among the different types 
of remote sensing techniques, the Advanced Differential 
Interferometric Synthetic Aperture Radar (A-DInSAR—
Franceschetti et al. 1992) proved to be a very powerful 
tool, being sensitive to sub-centimetric ground movements 
(Colesanti et al. 2006) and/or terrain displacements, induced 
by landslides (Wasowski and Bovenga 2022; Scifoni et al. 
2016; Pappalardo et al. 2018; Giardina et al. 2019; Guerriero 
et al. 2019), earthquakes (De Novellis et al. 2018; Zhao et al. 
2021), volcanoes (Foumelis et al. 2016; Casu et al. 2019) and 
valid to detect harm to structures and infrastructures (Milillo 
et al. 2018; Ullo et al. 2019; Pastor et al. 2019; Miano et al. 
2021). In the last three decades, A-DinSAR has been applied 
also in mining areas to detect subsidence due to underground 
activity (Yue et al. 2011; Du et al. 2016; Ammirati et al. 
2020; Pawluszek et al. 2020; Chen et al. 2021), monitoring 
the stability of tailings dam (Necsoiu et al. 2015; Gama et al. 
2019; Ammirati et al. 2021), and to identify surface move-
ments in open-pit mines (Paradella et al. 2015; Carlà et al. 
2018). The scientific community has studied many cases of 
mining subsidence in coal districts (Salmi et al. 2017; Jing 
et al. 2018; Zingano et al. 2019). In these areas, A-DinSAR 
resulted to be an effective technique for ground movement 
surveys (Dong et al. 2013; Xu et al. 2020). In several studies, 
the subsidence maps generated from satellite images proved 
to be consistent with field observations (Ismaya et al. 2012; 
Samsonov et al. 2013; Pawluszek et al. 2020).

From this point of view, it is essential to not underesti-
mate the potential effects of mining activities and constant 
monitoring the mineral resource exploitation and its effects 
on the ecological environment. Furthermore, mining moni-
toring is of greatest importance, not only for the scientific 
community but also for the mining companies, to reduce the 
potential effects and consequences.

In this work, an integrated approach based on geotechni-
cal numerical modeling and A-DInSAR method was applied 
for investigating subsidence phenomena which occurred in 
a coal mining area affected by underground exploitation.

The innovativeness of this application lies in several 
aspects: (1) it is one of the first applications in the min-
ing sector on Italian territory, (2) the time interval analyzed 

is about 10 years, thus allowing coverage of both the pre-, 
syn- and post-mining phases, (3) unlike previous works very 
high-resolution COSMO-SkyMed images were processed; 
in fact, there are few applications in the world that have used 
very high-resolution images for monitoring underground 
mining areas (Przyłucka et al. 2015a, b; Alam et al. 2022), 
finally, (4) it is one of the first combined applications, in 
the Italian mining sector, between a research institution and 
mining company with the objective of monitoring the reha-
bilitation of a dismissed mining area.

The study area is represented by a historic coal mining 
district located in southwest Sardinia, Italy, in the municipal-
ity of Nuraxi Figus (Carbonia-Iglesias province). The area 
occurs in the Carbosulcis S.p.A. mining concession called 
“Monte Sinni” (total extension of about 0.6  km2), where a 
subsidence phenomenon occurred between the years 2011 
to 2014 (Tessitore et al. 2018). In the present study, we ana-
lyzed the remote sensing data, obtained in the framework 
of Not-Ordinary Plan of Environmental Remote Sensing 
(Piano Straordinario di Telerilevamento Ambientale—in 
Italian), funded by the Italian Ministry of Environment (Cos-
tantini et al. 2017; Di Martire et al. 2016), to correlate the 
2011–2014 subsidence phenomenon with the underground 
mining activity and the excavation development, also using 
numerical modeling to reconstruct the kinematic evolution 
of ground displacements. Moreover, radar satellite data, 
derived from COSMO-SkyMed (CSK) datasets, were car-
ried out by SUBSIDENCE software, which implements the 
Coherent Pixels Technique algorithm (Mora et al. 2003; 
Iglesias et al. 2015), for the period from 2013 to 2020, to 
understand the temporal evolution of ground surface defor-
mation. The study allowed us to understand the cause-effect 
mechanism between extraction and ground deformation and 
confirmed that ground surface deformations can continue 
at lower rates a few years after the completion of mining 
activities.

2  History of mining activity in the Sulcis 
coal basin

In the Sulcis coal district, the mining activity started around 
1850 through the exploitation of productive coal outcrops 
occurring in the sedimentary rocks of the Lignitifero Forma-
tion (Fig. 1). During this period, coal became the primary 
national resource and was mostly exploited in open-pits 
(Fig. 2).

Since 1976, Carbosulcis S.p.A., which is the current 
owner of the mining licenses in the Sulcis district, started 
mining activity south of Seruci, in the Monte Sinni area, 
nearby the Nuraxi Figus village (Fadda et al. 1994). The 
Monte Sinni coal panels are located at a depth of about 
400 m b.g.l., extend for an area of 55  km2 and are mined 
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through 30 km of tunnels (15 km of which correspond 
to permanent infrastructures). Mining activity was con-
ducted in correspondence with some exploitation pan-
els, called W1, W2, W3, etc., with average dimensions 
of 300 m × 600 m (width × length) and a height of about 
3 m (Fig. 3). In the initial period of activity, mining was 
developed through room and pillars method, whereas from 
the 1980s the coal extraction was carried out with a differ-
ent method, called “longwall cutting in retreat”. The latter 
is based on the continuous extraction of the coal panel 
through a shearer that digs along the coal face, while a 
transporter belt carries away the grained coal. When the 
shearer moves on, the roof of the gallery at the back of 
the active face collapses. The Carbosulcis S.p.A. used the 
longwall method to extract the W3 and W4 panels, in the 
periods between 2008 and 2010 and from 2011 to 2012, 
respectively. In 2018, following the progress of environ-
mental regulations on the cessation of the use of coal, the 

Company started the closure plan that progressively will 
bring to reclaim all the areas by 2027.

3  Geological and geotechnical features

Geology of the Sulcis district is characterized by Cenozoic 
sedimentary and volcanic rocks, unconformably overlay-
ing a Paleozoic basement. The Cenozoic sedimentary rocks 
consist of limestones, sandstones, conglomerates, marls, 
and silty clays, and are formally subdivided into four strati-
graphic formations. At the basis of the Cenozoic succes-
sion, the oldest rocks are represented by the limestones of 
the Macro-foraminifera Formation, which are covered by 
the sandstones, marls and limestones of the Miliolitico For-
mation (20–70 m thick; Lower Eocene age). The following 
stratigraphic interval is represented by clays, marly lime-
stones, bituminous limestones, marls, and conglomerates of 

Fig. 1  Location map (left); Geological sketch map (right); The geological cross-section (below)
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the Lignitifero Formation (70–150 m thick; Lower-Middle 
Eocene age). which hosts the coal horizons object of min-
ing activity. Coal seams commonly are 10 cm thick, rarely 
reaching 30–50 cm, and are interbedded with clays (Assorgia 
et al. 1992a and b). The Lignitifero Formation is covered by 
about 300 m of sandstones, conglomerates, and marls of the 
Cixerri Formation (Eocene–Oligocene; Pasci et al. 2010). 
The whole Cenozoic sedimentary succession is in turn cov-
ered by volcanic rocks, represented by twelve andesitic, 
dacitic to rhyolitic ignimbrite plateaus belonging to several 
stages of explosive volcanic activity of Oligo-Miocene age 
(Morra et al. 1994). The whole district has been dislocated 
by normal faults, which lower the sedimentary succession 
to various hundred meters of depths within the basin (Barca 
et al. 2000). These geological features allow the existence 
in the area of two types of aquifers: one occurring in the 
volcanic rocks and a second one in the Miliolitico Forma-
tion, which have been both dewatered by Carbosulcis S.p.A. 
before the start of the underground mining activity.

From a geotechnical point of view, the Rock Mass Rat-
ing (RMR) (Bieniawski 1989) was used to numerically 

define the characteristics of the rocks, using "RMR value" 
for defining five quality classes (from very poor to very 
good). In particular, 89% of the volcanic rocks correspond 
to the fair class (III), whereas the sedimentary Formations 
are characterized by 57% to the fair class (III), 28% to the 
poor class (IV), and 10% to the good class (II) (Fadda et al. 
1994). According to Fadda (1994) the Cixerri Formation has 
a heterogeneous structure, where conglomerate and marls 
layers belong to the lowest classes, while sandstones are 
characterized by the best performance.

4  Materials and methods

For the present study, as summarized in the flow chart of 
Fig. 3, satellite data and mining information were used to 
create a near-real time monitoring system. Satellite data 
were collected in ascending and descending geometries 
covering the time span 2011–2020, to study subsidence by 
the vertical deformation maps and the displacement time 

Fig. 2  Location of exploitation panels, W1, W2, W3, W4. On right the maps of underground tunnels and excavation areas
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series. Two datasets composed of high-resolution images 
have been used:

(1) Satellite data 1 (SD1): PSP-IFSAR algorithm (Cos-
tantini et al. 2008), time 2011–2014, obtained in the 
framework of Not-Ordinary Plan of Environmental 
Remote Sensing (Piano Straordinario di Telerileva-
mento Ambientale—in Italian), funded by the Italian 
Ministry of Environment (Costantini et al. 2017; Di 
Martire et al. 2017).

(2) Satellite data 2 (SD2): SUBSIDENCE software (Mora 
et al. 2003; Iglesias et al. 2015), covering the period 
2013–2020.

SD1 consist of 41 images acquired in ascending geom-
etry and 58 images acquired in descending geometry in 
the time interval May 2011–March 2014. SD2 contains 
102 and 116 images in ascending and descending orbit, 
respectively related to the period from October 2013 to 
July 2020. First data set derived from the interferomet-
ric processing within the framework of the third stage of 
the PST-A project (Not-Ordinary Plan of Environmental 
Remote Sensing) funded by the Ministry for the Environ-
ment and Protection of the Territory and the Sea (Italian 
National Geoportal, www. pcn. minam biente. it). The sec-
ond dataset was obtained by the processing of SD2 using 
SUBSIDENCE software, which implements the Coherent 

Pixels Technique (CPT) algorithm, developed at the 
Remote Sensing Laboratory (RSLab) of the Universitat 
Politecnica de Catalunya of Barcelona. SUBSIDENCE 
uses the CPT-Temporal Phase Coherence (CPT-TPC) 
approach to extract from a stack of differential interfero-
grams the deformation evolution over wide areas during 
large periods (Mora et al. 2003; Iglesias et al. 2015). The 
processing is structured in three main phases:

(1) Interferogram generation: the generation of the best 
interferogram set among all the available images of the zone 
under study;

(2) The Stable Coherence Scatterers (SCS) selection: the 
points in the detected area characterized by signal stability 
and higher than the threshold in a specific percentage of 
interferograms. To get enough SCSs a coherence limit of 
0.6 was considered, assuming an error in mean displacement 
rate lower than 1.5 mm;

(3) Linear velocity of deformation (Iglesias et al. 2015): 
linear deformation time series (TS) were calculated starting 
from phase analysis. The Delaunay triangulation was used 
to check an offset among the different interferograms. Then, 
it was applied a filtering process to assess the deformation 
evolution of selected pixels (SCS) (Blanco et al. 2008); the 
geocoding of the results was carried out in WGS84-UTM.

This process allowed to elaborate PS (Permanent Scat-
ters) maps for each acquisition geometry in terms of mean 
displacement rate and time series of deformation, along the 
Line of Sight (LoS) of the satellite (Fig. 4). For a better 
understanding of the results, it is necessary to clarify the 
acquisition mode. Satellites move two semi-polar orbits 
defined as ascending and descending, moving from South to 
North and North to South, respectively, sending electromag-
netic signals along the Line of Sight (LoS) to identify targets 
on the surface. By convention, displacements approaching 
from the sensor will take on positive values (blue), while 
displacements away the sensor will take on negative values 
(red—Fig. 4).

Fig. 3  Flow chart of the methodological approach

Fig. 4  Geometry acquisition: a Ascending; b Descending

http://www.pcn.minambiente.it
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After this, by using images acquired in ascending and 
descending geometries the vertical displacement compo-
nent was calculated (Cascini et al. 2010; Di Martire et al. 
2013). Subsequently, to improve the analysis of the Nuraxi 
Figus subsidence, satellite datasets were integrated with 
the following information, provided by Carbosulcis S.p.A.: 
stratigraphic logs of 9 drillholes, geotechnical parameters of 
country rocks, mining reports regarding the exploitation of 
panels W3 and W4, and maps of underground tunnels and 
excavation areas. Spatial migration in time of the excavation 
front within the mining panels W3 and W4 was compared 
with the evolution of vertical ground displacements detected 
with the satellite data during the mining activity.

The 3D geological model of the subsurface was elabo-
rated by using lithostratigraphic data from 7 boreholes 
through the software Rockworks® (Fig. 5).

The model allowed us to determine the thickness of the 
overburden strata in the various parts of the study area. 
A stratigraphic section perpendicular to the W3 and W4 
exploitation panels was extracted from the 3D geological 
model to produce a numerical subsoil model through the 
Plaxis® 2D software (Brinkgreve et al. 2008). The finite 
element numerical model allowed us to model the excavation 
process in two-dimensions in order to quantify the subsid-
ence induced at surface level. The characteristic values of 
geotechnical rock parameters used for modelling (Table 1) 
were obtained by Carbosulcis S.p.A.

As reported in Table  1, due to similar geotechnical 
parameters, the twelve ignimbrite plateaus overlying the 

sedimentary units were grouped in four geotechnical lay-
ers. Cross sections (width = 200 m, height = 3 m) of pan-
els W3 and W4 were considered in the 2D model at the 
depth of 400 m. Each rock layer has been considered in the 
numerical model as linear elastic, with Young modulus E 
and Poisson’s ratio n as reported in Table 1. Evaluation of 
the overall subsidence (total vertical displacements of the 
surface) has been performed at the end of the following cal-
culation steps: (1) initial in situ stresses (geostatic stresses), 
(2) excavation of W4 panel, and (3) excavation of W3 panel.

Fig. 5  a Location of stratigraphic logs used to elaborate b 3D geological model of subsurface

Table 1  Geotechnical parameters used for modeling. The volcano-
pyroclastic rocks and ignimbrites are named Volcanic 1 to 4. The 
Cixerri Fm. is subdivided into two patterns. Retrieved from Carbo-
sulcis S.p.A

Geology layer Unit 
weight γ (kN/
m3)

Young’s modu-
lus E (N/m2)

Poisson’s 
ratio v

Volcanic 1 22 2.60 ×  107 0.25
Volcanic 2 14 1.94 ×  106 0.25
Volcanic 3 22 2.00 ×  107 0.21
Volcanic 4 23 1.06 ×  107 0.12
Conglomeratic 

Cixerri Fm
22 1.00 ×  106 0.40

Cixerri Fm 24 9.00 ×  106 0.30
Lignitifero Fm 13 1.00 ×  105 0.28
Miliolitico Fm 26 1.50 ×  1010 0.30
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5  Results

5.1  Processing phase

Starting from two satellite datasets, four PS-displacement 
rate maps for both acquisition geometries (ascending, 
descending) have been created. The PSs obtained were 
imported into GIS platform and subsequently made visible 
according to a colour scale: negative values conventionally 
indicate a movement of the target away from the satellite 
(LoS), while positive values indicate movement towards the 
sensor; stable areas are shown by using the green color (see 
Fig. 4). The maps represent the average velocity recorded 
during the period covered by the acquisitions (Fig. 6). The 
results of both ascending and descending geometries show 
that the predominant displacement rates are located in cor-
respondence with the panels.

In the central part of the monitored area, in the first 
period considered (2011–2014), PS-deformation velocities 

exceed the detection limits (Colesanti et al. 2006), and 
no satellite-based measurements are available. On the 
contrary, in the second period analyzed (2013–2020), the 
same zone is covered by PS-measurements.

This fact is likely related to the decrease in displace-
ment velocities. Indeed, the cumulated satellite-based LoS 
displacements vary between − 130 and + 28 mm (until Jan-
uary 2014), − 293 and + 28.4 mm (until March 2014) and 
between −6.9 and + 1.6 mm (until March 2020), − 8.72 
and + 4.33  mm (until March 2020) in ascending and 
descending geometries, respectively. In the 3D subsur-
face geological model of the investigated area (Fig. 5), it 
is possible to see the position of the Lignitifero Forma-
tion, which hosts the mined horizon at 350–500 m b.g.l. 
The thickest rock layers overlying this interval correspond 
to the sandstones and conglomerates of the Cixerri For-
mation. The volcano-pyroclastic rocks and ignimbrites 
(named Volcanic 1 to 4) have a thickness that varies from 
100 to 298 m.

Fig. 6  Mean displacement rate maps in ascending and descending orbit
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5.2  Post‑processing phase

The numerical model produced a simulation of the expected 
subsidence induced at the surface by the collapse of voids 
created by the excavation of the two coal panels (W3 and 
W4). The model was produced along an N-S section crossing 
both the W3 and W4 panels (Fig. 5). To reproduce the chro-
nology of the events and analyze if the differential exploita-
tion of the two panels influenced the total measured subsid-
ence, two calculation steps were performed. The first was 
related to the sole exploitation of the panel W4 (occurred 
from 2008 to 2010), whereas the second was related to the 
excavation of the W3 panel (which occurred from 2010 to 
2012). Figure 7 shows that vertical displacements reach a 
maximum value of 32 cm. The lateral extent of the subsid-
ence covers a horizontal length of about 1100 m, which is 
quite wider than the mined panel size. At the surface, the 
expected vertical displacement reaches a maximum value 
of 18 cm.

The availability of both ascending and descending 
datasets allowed us to reproduce the kinematics of the 
deformation through the displacement vector decomposi-
tion. The results, as shown in Figs. 8 and 9, are maps of 
vertical (VC) and horizontal (HC) components, with the 
total amount of displacement calculated in the time span 
2011–2020. Considering an x, y, z Cartesian coordinate 

system, HC maps coincide with the horizontal W-E and the 
VC maps with the vertical components. VC and HC were 
calculated considering three phases: pre-mining, syn-min-
ing and post-mining activity. The availability of satellite 
dataset allowed to obtain one map during the pre-mining 
activity related to September 2011, where no displacement 
has been detected. During the W3 panel extraction carried 
out in the period 2011–2012 the displacement vector com-
ponents were analyzed every two months. To understand 
the temporal evolution of displacements the progress of 
mining exploitation (i.e. the position of the exploitation 
front) has been integrated into the vector maps.

The post-mining activity was investigated every year 
from January 2013 onward. It is important to note that 
during the excavation of the W3 panel, between November 
2011 and October 2012, only slight deformations can be 
identified. In detail, displacements started in November 
2011 and developed until October 2012 with maximum 
cumulated vertical displacements of ca. 11 cm and hori-
zontal ones between −14 cm and 4 cm. On the contrary, 
the largest deformations were detected in correspondence 
of post-mining operations, during the period from January 
2013 to January 2014. Subsequently, subsidence contin-
ued slowly until January 2020 with maximum cumulated 
vertical displacements of ca. 26 cm and horizontal ones 
between − 24 cm and 7 cm.

Fig. 7  Vertical displacements obtained by means of the geotechnical numerical model. On top subsidence profile related to the section AA’
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6  Discussion

The aim of this work was to create a near-real time sys-
tem for monitoring mining activity starting from PS-maps 
and using a subsurface3D geological model. The expected 
subsidence value was defined in the geotechnical numerical 
model of the rocks overlaying the two mining panels W4 
and W3. Subsequently, the temporal vertical and horizontal 
component maps were created for monitoring the mining 
area during the exploitation and post-exploitation activity. 
Figure 10 shows the temporal evolution of vertical displace-
ments along the N-S oriented profile cross-cutting the mined 
panels, compared with the expected subsidence along with 

the same profile, as it was generated by the numerical model. 
The deformation started in November 2011, in correspond-
ence with the W4 panel, and developed and extended until 
2020, with maximum cumulated vertical displacements of 
ca. 26 cm located in the centre of two panels. It is important 
to note that most of the subsidence was temporally delayed 
respect to the coal exploitation.

In fact, during the mining activity, the expected subsid-
ence was not exceeded, whereas the maximum deformation 
occurred during the post-mining operations. The delayed 
occurrence of the maximum deformation depends on sev-
eral factors: peculiar features of the overburden geology, 
thickness of the panels, depth of the excavation area, and 

Fig. 8  Vertical deformation maps pre-mining, syn-mining, and post-mining activity. Black dashed lines in the figure represent the mining panels
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characteristics of the mining method. Several coal mining 
districts located in different countries, characterized by vari-
able geological settings, show temporal delays in the occur-
rence of maximum surface deformations. This particular 
subsidence phenomenon, which is called residual subsid-
ence (Alheib et al. 2005), continues after the extraction and 
in some cases can occur some months or years after the end 
of the underground mining activity (Huang et al. 2020; Cui 
et al. 2020; Modeste et al. 2021). Sometimes the residual 
surface deformation could be also characterized by uplift 
phenomena (Vervoort 2020). To understand the surface dis-
placement, in Table 2 maximum horizontal (E-W direction) 

and vertical components are compared with mining pro-
gress. During the extraction in 2011–2012, the major dis-
placement reported showed a horizontal component (Fig. 9). 
This was likely due to the position of the new mined zone. 
Subsequently, it is possible to note that the vertical displace-
ment increases respect to the horizontal one (Fig. 8). After 
the conclusion of mining activity, the deformation is concen-
trated between the two panels in the area characterized by 
the greatest geotechnical weakness (Table 2). This confirms 
that the observed displacements are directly related to the 
excavation process. The W3 panel was mined from 2011 to 
2012 and the highest deformation increment was detected in 

Fig. 9  Horizontal deformation maps pre-mining, syn-mining, and post-mining activity. Black dashed lines in the figure represent the mining 
panels
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January 2013, with differential vertical displacements of ca. 
10 cm. In later times, the increment is of a few centimeters 
per year, with values decreasing with time until now.

According to several authors (Cui et  al. 2000, 2020; 
Alheib et al. 2005; Tajduś et al. 2021), subsidence due to 
longwall mining is structured into three intervals. The first 
called initial subsidence, is the period when the surface 
movement lightly starts with low velocity.

The second phase (principal) is considered when 
displacements increase, generally up to 80% to 90% of 
final subsidence. The final phase, named “delayed” or 

“residual” period, is associated with surface subsidence 
that continues after the end of mining activity, and can 
be characterized by 10% to 15% of final subsidence. This 
“delayed” period can start around 12–18 months, or also 
around 3–4 months after the end of the underground exca-
vation, depending on the high or low geotechnical quality 
of the overburdened strata, respectively. In the Nuraxi-
Figus study case, the second subsidence phase ends one 
year after the end extraction (Fig. 11), when the verti-
cal displacement achieves about 84% of the final subsid-
ence. The delayed subsidence starts in January 2015 and 

Fig. 10  Cumulated vertical deformation profiles during the pre-mining, syn-mining, and post-mining activity. Yellow dashed lines in the figure 
represent the expected subsidence

Table 2  Maximum vertical 
and horizontal displacements 
related to mining progress. the 
E-W and W-E were related to 
the directions of horizontal 
displacements

Date Mining progress 
(m)

Vertical displacement 
max (cm)

Horizontal displacement 
max (E-W, cm)

Horizontal displace-
ment max (W-E, 
cm)

Nov-11 95  − 1.00  − 1.40 1.00
Jan-12 102  − 2.60  − 3.20 1.90
Mar-12 160  − 3.30  − 5.80 3.00
May-12 120  − 5.40  − 9.60 3.50
Jul-12 118  − 6.80  − 10.70 3.70
Sep-12 78  − 8.90  − 10.40 4.22
Oct-12 37  − 11.25  − 14.50 4.33
Jan-13 –  − 13.00  − 14.48 5.32
Jan-14 –  − 22.21  − 19.21 6.15
Jan-15 –  − 24.80  − 22.30 5.29
Jan-16 –  − 25.18  − 21.50 6.70
Jan-17 –  − 25.20  − 21.20 7.50
Jan-18 –  − 26.20  − 24.60 6.00
Jan-19 –  − 26.30  − 23.48 7.37
Jan-20 –  − 26.40  − 24.30 7.23
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develops slowly with a rate of about 20 mm/a (7% of final 
subsidence).

In the initial stages of underground mining, the caving 
zone is characterized by elastic deformations that recede 
if the overburdened forces are deleted. If extraction con-
tinues after a certain threshold, deformations become per-
manent. In this case, the pressure on the exploited areas 
increases, the sides move inward, the floor is subjected 
to uplift and the roof slides down (National Coal Board 
book 1965; Shadbolt et  al.1978). According to Whit-
taker (1989), deformation occurring above a mining goaf 
depends on the following factors: depth of the cover, prop-
erties of overburden strata, seam thickness, geometry of 
the extraction panel, surficial topography, and extraction 
techniques. Specifically, in the underground mining four 
zones can be identified in the rock pile occurring above 
the extraction area. Starting from the bottom to the top 
there are: I—the zone immediately above the extraction 
area (caving zone), II—the fractured zone where the major 
cracks are present; III—the deformation zone, and IV—the 
surficial zone where subsidence could occur (Peng 1992). 
According to Mills (1998), the maximum subsidence (Sm) 
expected in an underground mining area is related to the 
width of the extraction panel (W), and height of cover 
strata (H). By using these parameters, it is possible to 
identify three types of excavation areas (Whittaker et al. 
1989; Mills 2009):

(1) Supercritical (W/H > 1.6): Sm could be between 55% 
and 65% of the mined seam thickness;

(2) Critical W/H (from 0.6 to 1.6): Sm could be about 10% 
of the mined seam thickness, depending on changes in 
panel geometries, the overburden depth, and the com-
position and geotechnical properties of the strata;

(3) Subcritical (W/H < 0.6): Sm is negligible.

Applying the above subsidence model to the study area, it 
is possible to say that the caving zone should be completely 
included in the Lignitifero formation, whereas the fractured 
zone should affect the lower part of the Cixerri formation. The 
residual overlaying part of the Cixerri formation and the vol-
canic rocks should belong to the bending zone. In the geotech-
nical numerical model, it is possible to note that the maximum 
displacement is related to the Cixerri Formation. This is prob-
ably due to pre-existing structural discontinuities (fractures 
and faults), occurring in this Formation (Fadda et al. 1994), 
that were not considered in the geotechnical model. The sur-
face zone is instead characterized by slight surface movements.

7  Conclusions

In this study, an integrated approach for near-real time min-
ing monitoring was presented. The method allowed us to 
detect a subsidence phenomenon that occurred during the 

Fig. 11  Profile of maximum vertical cumulated displacement compared to three subsidence phases: initial (green), principal (red), residual (yel-
low)
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mining activity and continued also for a few years after the 
completion of mining work. The study confirms that ground 
surface deformations can occur also in areas subjected to 
very deep underground mining and that the DinSAR tech-
niques produce reliable results in terms of monitoring in a 
certain time span. The geotechnical numerical method can 
be used as subsidence forecasting model allowing to obtain 
the maximum expected amount of ground displacement. 
In underground mining areas, it is important to use moni-
toring techniques that can provide cost-effective regional 
perspectives for preventing possible negative environmental 
effects. The near real-time monitoring system applied in 
this study proved to be very useful for detecting subsidence 
during the mining activity and in the post-mining period. 
It is also important to emphasise that, in the absence of 
on-site monitoring, the method applied allowed us to recon-
struct the phenomenon that occurred in order to undertake 
the necessary activities for the rehabilitation of the area. 
Therefore, it can be used for planning environmental reme-
diation plans. However, to support the previous analysis 
and better investigate the subsidence-related cause-effect 
mechanism, as effectively as possible, it might be neces-
sary to also acquire additional external data (i.e. leveling 
surveys, extensometers).
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