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Abstract
Water–rock interaction (WRI) is a topic of interest in geology and geotechnical engineering. Many geological hazards and 
engineering safety problems are severe under the WRI. This study focuses on the water weakening of rock strength and its 
influencing factors (water content, immersion time, and wetting–drying cycles). The strength of the rock mass decreases 
to varying degrees with water content, immersion time, and wetting–drying cycles depending on the rock mass type and 
mineral composition. The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken 
accordingly. WRI enhances the plasticity of rock mass and reduces its brittleness. Various microscopic methods for study-
ing the pore characterization and weakening mechanism of the WRI were compared and analyzed. Various methods should 
be adopted to study the pore evolution of WRI comprehensively. Microscopic methods are used to study the weakening 
mechanism of WRI. In future work, the mechanical parameters of rocks weakened under long-term water immersion (over 
years) should be considered, and more attention should be paid to how the laboratory scale is applied to the engineering scale.

Highlights

(1)	 This paper reviews the water weakening on rock 
strength and its influencing factors.

(2)	 Various microscopic methods for studying the pore 
characterization and weakening mechanism of WRI 
are compared and analyzed.

(3)	 We study the weakening mechanism of WRIs using 
microscopic methods.

(4)	 Future works on WRI laboratory tests were suggested.

Keywords  Water–rock interaction · Weakening mechanism · Water content · Immersion time · Wetting–drying cycles · 
Microscopic methods

1  Introduction

Water–rock interactions (WRIs) are a topic of interest in 
geology and geotechnical engineering. Many physical and 
chemical reactions are involved in the WRI, including lubri-
cation, precipitation, oxidation–reduction, and ion exchange. 
Many geological hazards and engineering failures, such as 
slope stability (Zhao et al. 2018c), reservoir dam stability 
(Ukpai 2021), rock bursting (Chen et al. 2019a; Ma et al 
2022), karst collapse (Bai et al. 2013), and water inrush from 
mines and tunnels (Huang et al. 2016; Li et al. 2019b; Liu 
et al. 2022), are caused by the WRI. Analysis and interpreta-
tion of the influence of water on the mechanical behavior of 
rocks are based on the above problems. In recent years, many 
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studies have illustrated the effects of water on the mechani-
cal characteristics of rocks. In general, the presence of water 
reduces the elastic modulus, compressive strength, cohe-
sion, tensile strength, and rock brittleness (Baud et al. 2000; 
Erguler and Ulusay 2009; Zhou et al. 2017; Talesnick and 
Shehadeh 2007) and changes the fracture distribution and 
fragment shape after rock failure (Haberfield and Johnston 
1990; Shen et al. 2020; Guha Roy et al. 2017; Kataoka et al. 
2015). The water presence increases the pore water pressure 
in rock and soil mass, reducing the effective stress of rock 
and soil mass skeleton particles and changing the physical 
and mechanical parameters of the rock and soil mass. In 
addition, it is easy to cause the dissolution or change of min-
eral composition in rock, soil mass, and cement between 
grains to produce new mineral composition. The WRI effect 
will be greater if the water contains corrosive mineral com-
ponents (Luo et al. 2021). For example, rocks with higher 
clay mineral content are more susceptible to water penetra-
tion (Verstrynge et al. 2014).

This short review focuses on the water weakening of rock 
strength and its influencing factors, such as the water con-
tent, immersion time, and wetting–drying cycles. On this 

basis, the micromechanism of WRI and its corresponding 
research methods are addressed.

2 � Water weakening characteristics and its 
influencing factors

Mechanical experiments combined with corresponding char-
acterization methods are the primary methods used to study 
the weakening characteristics of the WRI. In conventional 
mechanical experiments (uniaxial and triaxial compres-
sion tests, Brazilian splitting tests, shear tests, point load 
tests, needle penetration tests, and Hopkins impact tests, 
as shown in Fig. 1), the shear, tensile, compressive, hard-
ness, and dynamic load strengths can be obtained. In the 
test process, in addition to obtaining the stress–strain curves, 
acoustic emission (AE), infrared radiation temperature, digi-
tal image correlation (DIC), 3D laser scanning, and other 
methods are typically used to characterize the influence of 
the WRI (Fig. 1).

The weakening analysis of the WRI focuses on the influ-
ence of water content, immersion time, and wetting–drying 

Amplifier

60dB
20dB
40dB

Computer

Input

AE system

Computer

Controller

Loading system

Computer

IRT system

Thermal imager

Computer

DIC system

High speed camera

Computer

3D laser profilometer

Brazilian tests Compression-shear tests

Uniaxial 
compression tests

Point load tests

Needle penetration
tests

Gas chamber

Dynamic strain 
meter

Transmission bar

Specimen

Momentum bar

Speedometer Oscilloscope

Strain gaugeStriker Incident bar Strain gauge

SHPB system 

Fig. 1   WRI mechanics test and primary analysis
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cycles on rock strength, as well as the corresponding AE and 
infrared radiation (IR) characteristics.

2.1 � Water content

Water content can be divided into two aspects: (1) the water 
content state, including the dry state, natural water content 
state, and saturated water content state, and (2) the actual 
moisture content of the rock mass. There are two methods 
for preparing rock samples with different water contents: 
direct immersion in water and a non-destructive immersion 
method that places rock samples in a wet and closed envi-
ronment to avoid the exchange or hydrochemical reaction 
between rock and water.

The compressive, shear, tensile strength, and elastic mod-
ulus decrease to varying degrees with the increasing water 
content, as summarized in Table 1. Among these, mudstone 
rocks have the highest water sensitivity. Granite and other 
hard rocks have the lowest sensitivity to water, and some 
rocks are unaffected by water. An increase in water content 
enhances the plasticity of the rock mass and reduces brit-
tleness (Noël et al. 2021). Some quantitative relationships 
(fitting formula) between the mechanical parameters (σt, σc, 
σtc, τ, E, v, c φ, etc.) and water content are summarized in 
Table 1. In addition, the water content reduces the fracture 
toughness after rock failure (Zhou et al. 2018a, b; Hua et al. 
2015).

AE describes the energy release characteristics of rocks 
during fracturing or cracking. Hard rocks typically accumu-
late more energy during loading and would release stronger 
AE signals during failure. As the water content increases, the 
cumulative and peak AE signals, high-frequency AE signals, 
AE signal differences, and AE signal distribution uniform-
ity decrease (Li et al. 2019a, 2021b; Ranjith et al. 2008; 
Guo et al. 2018; Lin et al. 2019; Zhu et al. 2020; Liu et al. 
2019). In addition, with an increase in water content, AE 
is concentrated in the fracture stage, and the fractal dimen-
sion decreases (Song et al. 2020; Kong et al. 2017, 2019). 
Wet rocks generally produce small fragments during failure, 
which decreases the fractal dimension, and irregular frac-
tures occur during loading.

For the correlation between moisture content and IR, the 
average IR temperature (AIRT) generally increases with 
increasing load and depends on the state of the rock sam-
ples (wet or dry, damaged or not). Before the damage, wet 
rocks generally show a faster increase in the AIRT, whereas 
dry rocks would produce more increments in the AIRT dur-
ing damage (Deng et al. 1997; Liu et al. 2010). However, 
in the entire loading process, the higher the water content, 
the greater the AIRT, and the smaller the AIRT fluctuation 
(Zhou et al. 2018c). Sun et al. (2021a) further showed that 
the applied stress controls IR; for example, the IR count 
(IRC) will simultaneously increase when the stress suddenly 

drops. The water content reduces the stress due to water 
weakening. The above conclusions mainly rely on the uni-
axial compression tests. Shear tests by Yao et al. (2020a) 
concluded that the IR characteristics were comparable to 
those of the uniaxial compression tests.

With increasing water content, the dynamic load strength 
and dissipated energy decreased, but the elastic modulus 
increased. The dynamic strength of saturated rocks is more 
sensitive to the strain rate than that of dry rocks. With an 
increase in the strain rate (43.9–156.7 per second), the water 
weakening effect decreases gradually (Cai et al. 2020b). Fur-
ther, compared with the uniaxial compressive strength of dry 
rock samples, that of saturated rock increases with the load-
ing rate in two stages: rapidly increases at low loading rates, 
and then decreases at high loading rates (Zhu et al. 2021).

2.2 � Wetting–drying cycles

Many practical engineering problems involve wetting–dry-
ing (WD) cycles, such as rocks in exposed slopes, coastlines, 
and pumping reservoirs. Similar to preparing rock masses 
with different water contents, there are also two methods 
(free and pressure immersion method, air and oven (or 
heater) drying) for preparing rock samples experiencing WD 
cycles. A vacuum pressure condition is adopted to accelerate 
rock saturation when preparing rock immersion, whereas 
the free immersion method is performed under atmospheric 
pressure conditions. In the drying process, oven drying can 
accelerate the drying of rocks compared with air drying. 
Previous laboratory tests have shown that the WD cycle 
treatment has a significant impact on the mechanical and 
physical properties (Aw, P, PLI, SDI, KIC, KIIC, Keff, Vp, σc, 
σt, E, c, φ, τ, σcd, Ed, Tc, R, and H) of the rock, as summa-
rized in Table 2 (Liu and Zhang 2020; Momeni et al. 2017; 
Zhou et al. 2018b; Chen et al. 2019c; He et al. 2020; Huang 
et al. 2022).

Although the WD cycle treatment methods were different 
in these studies, consistent weakening characteristics were 
observed. With progressive WD cycles, the porosity and 
water absorption increased monotonically, whereas the other 
parameters in Table 2 generally decreased. The decrease in 
mechanical and physical parameters gradually diminished 
with the progression of WD cycles (Sun and Zhang 2019; 
Khanlari and Abdilor 2015; Huang et al. 2010; Fu et al. 
2017; Zhao et al. 2018a; Gratchev et al. 2019; Yao et al. 
2019b; Wu et al. 2020b; Cai et al. 2020a; Li et al. 2021c). 
For example, it was found that the first 10 WD cycles sig-
nificantly impacted the rock's strength; there was no change 
(Zhao et al. 2021; Guo et al. 2021) in the following cycles. 
The fracture toughness and crack propagation were also 
affected by the WD cycle. The fracture energy and frac-
tion coefficient decrease with WD cyclic treatment (Zhao 
et al. 2017b, c; Song et al. 2019; Ma et al. 2018). The rock's 
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Table 2   Summary of laboratory test results of rock mechanical and physical properties with WD cycle treatment

Rock type Sample size Treatment methods Cycle number Test results Reference

Wetting Drying

Coal CS (Φ50 × 100) WW (24 h) OD (95 °C/24 h) 
AD (20 °C/4 h)

10 Aw increase; σc, E 
decrease

Chen et al. (2019b)

Granite CS (Φ50 × 100) WW (24 h) OD (105 °C/12 h) 60 σc, E decrease Chen et al. (2019c)
Sandstone CS (Φ50 × 100) WW (24 h) OD (105 °C/12 h) 20 σc, E, c, Φ decrease Liu et al. (2018)
Granite CS (Φ50 × 100) WW (24 h) OD (105 °C/12 h) 20 σc, E, c, Φ decrease Qin et al. (2018)
Sandstone; mud-

stone
CS (Φ50 × 100) WW (24 h) OD (110 °C/12 h) 40 Aw increase; σc, E 

decrease
Huang et al. (2018)

Greywacke; Basalt CS (Φ50 × 50) WW (24 h) OD (100 °C/12 h) 40 PLI, SDI decrease Gratchev et al. 
(2019)

Weak muddy inter-
calation

CS (Φ61.8 × 20) WW (24 h) OD (40 °C/45 h) 6 τ, c decrease He et al. (2020)

Sandstone CS (Length to 
diameter ratio of 
2.5 to 3.0)

WW (24 h) OD (110 °C/12 h) 40 σc, decrease Khanlari and Abdilor 
(2015)

Sandstone CS (Φ25 × 50) WW (24 h) OD (80 °C/2 h) 50 Tc, σt, VP decrease Sunand Zhang 
(2019)

Ignimbrite CS (Φ54 × 108) WW (24 h) OD (105 °C/12 h) 50 Aw P increase; Vp, 
σc, decrease

Özbek (2014)

Granitoid rocks Rock pieces WW (24 h) OD (110 °C/24 h) 40 SID decrease Momeni et al. (2017)
Sandstone CCBD specimen WW (48 h) OD (105 °C/24 h) 7 Keff, σt decrease Hua et al. (2017)
Sandstone CSTBD specimen WW (48 h) OD (105 °C/24 h) 7 KIIC, decrease Hua et al. (2016)
Sandstone CCNBD specimen WW (48 h) OD (105 °C/24 h) 20 P increase; KIC, 

KIIC decrease
Dehestani et al. 

(2020)
Sandstone CCBD specimen WW (48 h) OD (105 °C/24 h) 7 KIC, σt decrease Hua et al. (2015)
Mudstone Rock pieces WW (3 days) AD (26 °C/24 h) 11 SID, decrease Liu and Zhang 

(2020)
Sandstone CS (Φ50 × 100) WW (5 days) OD (105 °C/12 h) 15 σc, E, Vp decrease Huang et al. (2020a, 

b)
Sandstone NSCB specimen WW (25 °C/24 h) AD (25 °C/6 days) 50 P increase; Vp, KIC, 

decrease
Cai et al. (2020a)

Tuff CS (L/D ratio of 
2.5)

WW (15–
24 °C/24 h)

OD (105 °C) 52 Aw P increase; σc, 
Vp, decrease

Topal and Sözmen 
(2003)

Sandstone CS (Φ50 × 25) WW (25 °C/24 h) AD (25 °C/6 days) 50 Aw P increase; Vp, 
SDI, σt decrease

Zhou et al. (2018b)

Sandstone CS (Φ50 × 25/100) WW 
(25 °C/25 days)

OD (110 °C/24 h) 5 σc, σt, E, decrease Yao et al. (2020c)

Granite CS (Φ50 × 25) WW (25 °C/10 h) OD (50 °C/10 h) 100 R increase; H 
decrease

Zhao et al. (2020)

Sandstone CS (Φ50 × 50) WW (25 °C/48 h) AD (25 °C) 50 Aw P increase; 
Vp, SDI, σcd, Ed 
decrease

Zhou et al. (2018a)

Iron ore CS (Φ50 × 100) GWW (8 h)
WW (48 h)

AD (26 °C/7 days) 15 σc, E, Vp, decrease Yang et al. (2018)

Sandstone CS(Φ50 × 100) GWW (6 h)
WW (6 h)

OD (50 °C/12 h) 25 Aw increase; Vp, σc, 
E decrease

An et al. (2020)

Sandstone CS(Φ50 × 100)
CS(Φ50 × 50)

GWW (6 h)
WW (12 h)

OD (50 °C/12 h) 
AD (48 h)

30 Aw, εc increase; σc, 
E, c, φ decrease

Li et al. (2021c)

Sandstone CS (Φ50 × 25) GWW (6 h)
WW (18 h)

AD (3 days) 15 σt, decrease Zhao et al. (2017b)

Mudstone CS (Φ25 × 50) WWV 
(− 10 MPa/24 h)

OD (60 °C/24 h) 12 P increase; σc 
decrease

Zhao et al. (2018a)

Sandstone CS (Φ50 × 100) WWV (4 h)
WW (44 h)

OD (45 °C/20 h); 
AD (4 h)

15 P increase; VP, σc, 
c, decrease

Zhang et al. (2014)
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mineral composition has been found to be the main factor 
affecting the weakening of the WD cycle (Zhou et al. 2017; 
Tang et al. 2021).

2.3 � Immersion time

The immersion time is more closely related to the actual 
field situation than the water content. Underground rock 
masses are occasionally immersed in water for months or 
years, and immersion time significantly affects rock strength 
(Bai et al. 2016). However, in most laboratory tests, the max-
imum immersion time is generally no longer than 1 year. 
The immersion time is currently limited because some rocks 
(especially those with strong hydrophilicity, such as mud-
stone) disintegrate after immersion for a short period (Azhar 
et al. 2020; Fujii et al. 2020). In addition, many studies have 
shown that some rocks do not weaken even after long-term 
immersion (Ai et al. 2021; Lyu et al. 2022).

As the immersion time increases, the mechanical parame-
ters (σc, σt, E, c, φ, τ) of some rocks are weakened, their brit-
tleness decreases, the failure mode becomes stable, and the 
roughness of the fracture planes increases (Zhu et al. 2020; 
Ma et al. 2021). The time-dependent immersion weakening 
varies for different rocks. For example, as the immersion 
time increases, the uniaxial compressive strength of coarse 
sandstones first decreases rapidly, then increases slightly, 
and finally decreases (Wu et al. 2020a). The uniaxial com-
pressive strength and elastic modulus of argillaceous slates 
decrease with increasing immersion time, whereas Poisson's 
ratio remains roughly unchanged (Huang et al. 2020b).

2.4 � Other WRI related factors

The chemical composition and water pressure play signifi-
cant roles in WRI weakening. The mechanical parameters 
(σc, σt, E, c, φ, τ) of chemically treated samples generally 

demonstrate more significant weakening compared with 
natural immersion conditions, especially for pre-fractured 
samples (Zhang et al. 2019; Gong et al. 2021). For exam-
ple, the salts contained in water can gradually accumulate 
in the pore networks of rocks under wetting–drying cycles, 
which can cause rock deterioration (Jiang et al. 2022). The 
water immersion height also influences rock strength; the 
strength of partially presoaked specimens is lower than that 
of wholly presoaked specimens (Chen et al. 2021). Seepage 
water pressure enhances the deformation resistance of rock 
and affects rock strength. As seepage pressure increases, the 
stress thresholds for crack initiation and damage during rock 
compression decrease (Xiao et al. 2020; Zhong et al. 2019; 
Li et al. 2020b). Generally, studies on the WRI of rock mass 
cover various factors, and strength tests investigate the weak-
ening characteristics under various immersion conditions to 
reflect engineering environments. Then, it is used to predict 
the degree of influence of the WRI on engineering scales.

3 � Weakening mechanism and microscopic 
characterization

Many studies have shown that WRI is mainly the inter-
action between water and clay-related minerals in rocks, 
which changes the pore structure and further degrades 
their strength. Therefore, in addition to characteriz-
ing the macroscopic strength, investigating the internal 
microstructure is a valuable way to uncover WRI mecha-
nisms. Microscopic observations include laser scanning 
confocal microscopy (LSCM) (An et  al. 2020), polar-
izing microscopy (PM), scanning electron microscopy 
(SEM) (Dehestani et  al. 2020; Zhang et  al. 2014; Liu 
et al. 2018; Yang et al. 2018; Zhou et al. 2018b; Du et al. 
2019), neutron radiography (NR), nuclear magnetic reso-
nance (NMR) (Xie et al. 2018; Zhao et al. 2017a, 2018a, 

Note: CS cylindrical sample, OD oven-dried; AD air-dried, GWW gradually water wetting (1/3 forward); WW/WWV water wetting without 
and with vacuum condition; BD Brazilian disk, NSCB/SCB notched/semi-circular bend; CCBD/CCNBD/CSTBD Brazilian disk with centrally-
cracked/cracked chevron notch/cracked straight-through, R Surface roughness; Tc thermal conductivity; Ed dynamic Young's modulus; σcd 
dynamic compressive strength; σt tensile strength; Keff effective fracture toughness; KIIC mode II fracture toughness; KIC mode I fracture tough-
ness; SDI slake durability index; PLI point load index; P porosity; Aw water absorption

Table 2   (continued)

Rock type Sample size Treatment methods Cycle number Test results Reference

Wetting Drying

Sandstone CS WWV (4 h)
WW (44 h)

OD (105 °C/20 h); 
AD (4 h)

20 σc, E decrease Xie et al. (2018)

Sandstone CS (Φ50 × 25/50) WWV 
(− 80 kPa/24 h)

OD (105 °C/24 h) 10 Aw increase; Vp, σt 
decrease

Liu et al. (2016)

Sandstone SCB specimens; 
CS (Φ50 × 50)

WWV 
(− 80 MPa/24 h); 
WW (44 h)

OD (105 °C/24 h) 10 KIC, σt decrease Liang and Fu (2020)
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b, 2019b), computed tomography (CT), and small angle 
X-ray scattering (SAXS) and other methods (Liu et al. 
2016; Zhao et al. 2014, 2019a; Wang et al. 2021). The 
main application of the micro-observation techniques is 
shown in Fig. 2. The XRD pattern shown in Fig. 2 is typi-
cally used to investigate the hydrophilic mineral composi-
tion of the rocks.

The microinvestigation methods shown in Fig. 2 can be 
divided into three categories: SEM, PM, and LSCM. They 
are primarily used to observe the surface structure of a rock 
mass. SEM can be used to observe the mineral occurrence 
morphology, crystal morphology, surface morphology, and 
composition. However, the tested samples must be sprayed 
before SEM scanning; therefore, it is a destructive test. 

Applicability: X-ray Diffraction (XRD) can obtain structural
features and mineral composition of samples, but it can
damage the integrity of the sample.

N grayscale images

Computer Tomography technique

NMR test

SEM test

X-ray Diffraction

Applicability: Computer Tomography technique (CT) is a non-
destructive 3D imaging technique, which has been extensively
applied in various geological applications, i.e. analysis of coal
damage at different pressures, evaluation of coal heterogeneity
and spatial distribution of pores, fractures and minerals.
Accuracy: 500nm.

Applicability: Nuclear magnetic resonance (NMR) is a non-
destructive testing method, which can directly or indirectly 
reflect the change of fluid distribution in porous media, and 
further analyze the change of pore structure and permeability.  

3D model reconstructed

Applicability: Neutron radiography has been used in many
studies to analyses water migration and distribution in porous
media, such as rock, brick, and concrete.
Accuracy: 100μm.

Neutron radiography 

Applicability: The scanning electron microscopy (SEM) can
observe the mineral occurrence morphology, crystal
morphology, surface morphology and composition of the
sample.

Small angle scattering technique

Applicability: The small angle scattering technique has a
unique advantage in characterizing the nano-pore structure of
coal non-destructively, which can provide statistical information
on structure of nano-porous materials, including open pores and
closed pores.
Accuracy: 1nm.

Accuracy: 1nm.

Accuracy: 1nm.

Fig. 2   Main characterization means of pore structure in WRI analysis
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LSCM is mainly used for scanning the fracture surface. 
NMR and NR are mainly employed to judge pore structures 
and immersed liquids. The NMR is a non-destructive test 
that is widely used to characterize pore structures. However, 
NMR cannot be used to reconstruct a three-dimensional pore 
structure. CT, SAXS, and XRD are used for X-ray fluoros-
copy, and the pore structure and mineral composition can be 
reconstructed with post-processing. CT is a non-destructive 
technique that can reconstruct pore and fracture structures 
in real time and is widely used to track pore and fracture 
evolutions during rock deformation. However, in the pro-
cess of three-dimensional reconstruction of CT images, the 
division of pore fracture and mineral composition threshold 
is generally manually defined, which sometimes affects the 
accuracy of the reconstruction model.

Thus, various microcharacterization techniques are gen-
erally used for complementary analysis (Zhang et al. 2021; 
Ai et al. 2021). For example, NMR, XRD, and CT can be 
used to accurately reconstruct pore structures and mineral 
compositions (Fig. 3). Specifically, the mineral composi-
tion in the sample is first identified by XRD, such as clay 
mineral composition with strong hydrophilicity, and then the 
threshold is used during the reconstruction of CT images. 
Similarly, NMR can accurately provide the pore structure 
division threshold for CT reconstruction.

Based on the CT reconstruction method (Fig. 3), we 
reconstructed the pore structure and mineral composition 
model of the coal samples before and after water immersion. 
Table 3 shows the distribution of the pores with increased 
connectivity (blue) and reduced clay minerals (red) before 
and after immersion. The locations where the clay minerals 
are reduced coincide with the positions where the connec-
tivity pores are increased. Further, the change in the pore 
structure in the sample during WRI is mainly caused by the 

Fig. 3   Reconstruction process of "pore-fracture" dual structure of a coal sample

CT equipment CT images

AVIZO
restructure

D/MAX-2500 XRD

MesoMR23-60H 
NMR

Pore fracture threshold Mineral composition threshold

Pore and fracture Clay minerals Coal matrix

Table 3   Distribution map of pore and mineral changes

Pore and mineral distribution location Coinci-
dence ratio 
(%)

a

59.82

b

63.14

c
65.38

d

61.97



	 C. Zhang et al.

1 3

   10   Page 10 of 15

dissolution and expansion of hydrophilic mineral compo-
nents (Azhar et al. 2020; Huanget al. 2020b; Liu et al. 2021).

Currently, five mechanisms for rock strength weakening 
caused by water immersion have been proposed: (1) expan-
sion and dissolution of clay minerals, (2) reduction of capil-
lary tension, (3) increase in pore pressure, (4) reduction of 
fracture energy, and (5) weakening of intergranular cohesion 
and friction (Zhu et al. 2020; Li et al. 2020a). By comparing 
the CT images before and after immersion (Fig. 4), the inter-
nal damage process caused by the WRI can be observed. Fig-
ure 4a and b show the CT images at the same position before 
and after immersion. The darkening of the greyscales in the 
CT images indicates an increase in damage and a decrease in 
density. Therefore, pre-existing weaknesses are displayed in 
darker colors. As shown in Fig. 4a, there are apparent darker 
parts (weaknesses) in the dry sample because coal is a typi-
cal porous medium with a large number of pore structures 
(connected pores and isolated pores) and fracture structures 
(Yao et al. 2019a). After immersion, the size and aperture of 
the internal fractures in the coal sample increased, and cleats 
between beddings gradually developed with water degrada-
tion. Fracture structures have better connectivity and higher 
permeability, forming the main flow channels of the fluid 
medium; meanwhile, clay minerals near the fractures are dis-
solved in water. In addition, water weakens the intergranular 
bonding of pre-existing weaknesses, and the development of 
fractures and pores (connected pores) increases the contact 
area between water and coal, resulting in the appearance 
of cleats between beds. For the rock samples, water mainly 
weakened the cementation between the crystals (Fig. 4d). 
The stress and energy required for failure along the fractures 
and cleats are significantly lower than those required for 
the direct penetration of the coal matrix and rock crystals; 
therefore, the higher the water content, the smaller the rock 
strength and the weaker the AE signal (Fig. 4) (Deng et al. 
2021; Li et al. 2021a, b; Miao et al. 2021).

4 � Conclusions and prospect

Research on the water weakening of rock masses mainly 
focuses on the effects of water content, water immersion 
time, and cyclic water immersion. The strength–weakening 
degree is characterized by uniaxial and triaxial strength, 
shear strength, tensile strength, point load, penetration, etc. 
AE and IR methods are typically used to study the fracture 
and energy characteristics during loading under WRI. The 
strength of the rock mass decreases to varying degrees with 
water content, immersion time, and WD cycles and is related 
to the type of rock mass and mineral composition. Gener-
ally, the strength decreases exponentially with an increase 
in water content. The previous several WD cycles have a 
significant impact on the strength of the rock mass and have 

little effect on the progression of WD cycles. The degree of 
rock weakening gradually decreases with an increase in the 
immersion time. The corresponding AE count, intensity, and 
IR intensity also weaken accordingly. The WRI enhances the 
plasticity of rocks and reduces their brittleness.

Various microscopic methods have been used to study 
pore characterization and the weakening mechanism of 
WRI. SEM can qualitatively observe the fracture structure 
and mineral composition of the rock mass, but it is impos-
sible to directly compare the porosity before and after water 
immersion owing to gold spraying during observation. NMR 
can quantitatively determine the porosity and pore size dis-
tribution and is a non-destructive test technique, making it 
possible to compare the pore size changes before and after 
immersion. CT scanning combined with corresponding 
reconstruction algorithms can quantitatively compare the 
changes in pore structure and mineral composition before 
and after immersion. However, the threshold division in 
CT image reconstruction is significant and directly affects 
the accuracy of the analysis. Thus, various micro-methods 
can be used to study the evolution of pore structure changes 
under WRI.

In the WRI weakening mechanism, the clay minerals in 
the rock mass dissolve in water, which expands the pore 
structures, increases the connected pores, further expands 
the primary fractures, and consequently increases the poros-
ity and permeability. At the same time, the presence of water 
weakens the cementation strength near the primary frac-
tures, making it easier to expand the splitting fracture along 
the joint surfaces. All these weakening processes lead to a 
decrease in rock strength and AE intensity.

Currently, studies on both the physical and mechanical 
properties and the weakening mechanism of WRI are rela-
tively mature. Targeted experiments can only be carried out 
for special rock masses (different mineral compositions) or 
water environments (different water chemical compositions) 
in on-site engineering (water influence conditions). On this 
basis, the corresponding mechanical test modes (tension, 
compression, shear, or other tests), water influencing fac-
tors (moisture content, wetting–drying cycles, immersion 
time, etc.) and macro (AE, AIRT, etc.) and micro (SEM, 
NMR, CT, etc.) characterization methods can be considered. 
Thus, more attention should be paid to how laboratory-scale 
tests can be applied in engineering scale practice. Therefore, 
some qualitative conclusions must be transformed into quan-
titative models, which can then be applied to field engineer-
ing problems through numerical simulations. In addition, 
when investigating the effect of the immersion time, most 
laboratory tests are applied for less than half a year; how-
ever, long-term water immersion (even hundreds of years) 
problems generally occur. The weakening mechanism of 
WRI in rocks can also be explained using the changes in 
water immersion chemical ions and components.
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Fig. 4   CT images of a coal sample before and after water immersion. a Dry sample b Saturated sample c Coal-weakening mechanism and d 
Rock weakening mechanism
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