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Abstract
The laminar combustion characteristics of CH4/air premixed flames with CO2 addition are systemically studied. Experimental 
measurements and numerical simulations of the laminar burning velocity (LBV) are performed in CH4/CO2/Air flames with 
various CO2 doping ratio under equivalence ratios of 1.0–1.4. GRI 3.0 mech and Aramco mech are employed for predicting 
LBV, adiabatic flame temperature (AFT), important intermediate radicals (CH3, H, OH, O) and NOx emissions (NO, NO2, 
N2O), as well as the sensitivity analysis is also conducted. The detail analysis of experiment and simulation reveals that 
as the CO2 addition increases from 0% to 40%, the LBVs and AFTs decrease monotonously. Under the same CO2 doping 
ratio, the LBVs and AFTs increase first and then decrease with the increase of equivalence ratio, and the maximum of LBV 
is reached at equivalence ratio of 1.05. The mole fraction tendency of important intermediates and NOx with equivalence 
ratio and CO2 doping ratio are similar to the LBVs and AFTs. Reaction H + O2 ⇔ O + OH is found to be responsible for the 
promotion of the generation of important intermediates and NOx under the equivalence ratios and CO2 addition through 
sensitivity analysis. The sensitivity coefficients of elementary reactions that the increasing of CO2 doping ratio promotes or 
inhibits formation of intermediate radicals and NOx decreases.
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List of symbols
AFT	� Adiabatic flame temperature
CH4	� Methane
CO2	� Carbon dioxide
LBV	� Laminar burning velocity
MFC	� Mass flow controller
N2	� Nitrogen
O2	� Oxygen
Vdiluent	� Volume fractions of dilution gas
Vfuel	� Volume fractions of dilution fuel
Φ	� Equivalence ratio
α	� CO2 doping ratio
ṁ

fuel
	� Mass flow rates of fuel

ṁ
air

	� Mass flow rates of oxidant

1  Introduction

Carbon dioxide (CO2) and methane are responsible for 
global warming and climate change. Human beings must 
solve a series of problems related to global warming, and 
greenhouse gas emissions is the main factor leading to this 
problem (Wang et al. 2021; Li and Fang 2014). In order to 

cope with the high CO2 concentration in the atmosphere, it is 
necessary to reduce carbon emissions through various meth-
ods. CO2 capture and utilization have attracted more and 
more attention, such as CO2 capture (Talapaneni et al. 2019; 
Huang et al. 2019) and conversion of CO2 to hydrocarbons 
(Ao et al. 2020; Guo et al. 2019; Zhang et al. 2021; Shamiri 
et al. 2016). Besides, exploring the effect of CO2 dilution 
on the fuel combustion (e.g., hydrocarbons, synthesis gas, 
biogas, etc.) is also one of the important research fields. 
Exhaust gas recirculation (EGR) has been shown to be an 
effective method to reduce NOx emissions and improve burst 
resistance. EGR contains gases consisting a large amount of 
CO2, and EGR affects the combustion process through three 
pathways: (1) thermal, (2) dilution, and (3) chemical effects 
(Wang et al. 2022). CO2 is also required as a diluent for both 
moderate and intense low oxygen dilution combustion and 
oxyfuel combustion (Liu et al. 2020). Methane, as the sim-
plest hydrocarbon fuel, is of great theoretical and practical 
importance for the study of its blending and combustion with 
CO2. Laminar combustion is the basis of turbulent combus-
tion and the cornerstone of further study of combustion and 
it can reflect various combustion characteristic parameters 
such as laminar burning velocity, ignition energy, maximum 
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flame temperature, ignition delay, ignition temperature and 
concentration of fuel (Movileanu et al. 2011). Laminar burn-
ing velocity (LBV) is an inherent characteristic of fuel and 
an important parameter for laminar flame propagation and 
stability. Laminar burning velocity depends on the type and 
composition of fuel and initial conditions such as equiva-
lence ratio, pressure and temperature, and contains impor-
tant information such as reaction, diffusion, heat release, 
tempering, instability, etc. (Chu et al. 2020; Nonaka and 
Pereira 2016; Zhang et al. 2015). It's a very vital parameter 
in the design effective control of combustion systems, such 
as the design and manufacture of combustors and explosion 
suppression devices, and the optimization of internal com-
bustion engines (Hu et al. 2009a, b; Dirrenberger et al. 2011; 
Razus et al. 2010; Ren et al. 2019a, b; Chu et al. 2019).

Sampath et al. (2023) investigated the effect of CO2 on 
the laminar burning velocity of CH4/air at high temperatures 
by using the externally heated diverging channel (EHDC) 
method. It was shown that the dilution of CO2 enhances 
the competition for H-atom consumption, and the LBV 
increased with the increase of the mixture and decreased 
with the proportion of doped CO2. Ghabi et al. (2023) stud-
ied the effect of microsecond pulsed plasma on non-pre-
mixed biogas. Shang et al. (2022) systematically investigated 
the effect of N2/CO2 on H2/CH4/air laminar flame velocity. 
Ueda et al. (2021) explored the effect of CO2 on the pre-
mixed combustion characteristics of methane/air using the 
spherical expansion method. Jithin et al. (2020) investigated 
the combined effect of CO2/N2 dilution on the laminar com-
bustion rate of methane/oxygen by heat flux method and 
numerical simulation. The results showed that the laminar 
burning velocity decreased with increasing proportion of 
blended CO2 and it is found that the laminar burning veloc-
ity decreased more in the fuel-rich combustion case than in 
the fuel-lean combustion and stoichiometric ratio. Anggono 
et al. (2020) investigated the effect of CO2 concentration on 
the laminar burning velocity and Markstein length of CH4/
air premixed flames at high pressure constant volume com-
bustion. It was shown that there is a monotonic relationship 
between the Markstein length and the CO2 dilution ratio and 
that the unstretched laminar burning velocity of the mix-
ture decreased with increasing CO2 concentration. Azatyan 
et al. (2010) reported the effect of CH4, N2, CO2 and steam 
addition on the LBVs of H2. The predictions showed that 
with the increase of H2 doping ratio, the LBVs of H2/Air 
monotonically decreased, but did not exceed 1.5 times, and 
the AFTs changed slowly. The effect of CO2 and N2 on the 
flame stability and LBVs of syngas/air was successfully per-
formed by Burbano et al. (2011). Through experimental and 
numerical simulations, Burbano et al. (2011) showed that 
with the increase of CO2 dilution doping ratio, the LBVs 
decreased obviously due to the decrease of heat release and 
the increase of heat capacity. This conclusion was consistent 

with the conclusion of Ref. Wang et al. (2012) measured 
the LBVs of CO/H2/CO2/O2 by using spherical flame. The 
experimental results proved that H2 and CO2 have opposite 
effects on the LBV of syngas. Sun and Xu (2020) conducted 
the relationship between turbulent burning velocity and H2 
content in synthesis gas and revealed that turbulent burning 
velocity was a second-order polynomial of hydrogen vol-
ume fraction. Based on heat flux method and Bunsen burner, 
Wang et al. (2015) measured the LBVs of CO/H2/N2/CO2 
and numerically analyzed the effect of H and OH radicals on 
the LBV of syngas. The results showed that H had a linear 
relationship with LBVs. Nonaka and Pereira (2016) studied 
the effect of CO2 addition in biogas on LBVs. The LBVs and 
other combustion characteristics of the natural gas blended 
with N2, CO2 and H2O were carried out by Ren et al. (2019a, 
b, 2020). In addition, the effects of CO2 on NOx formation of 
methane combustion products were also conducted. Xiang 
et al. (2019, 2020) numerically investigated the chemical and 
physical effects of CO2 and H2 on LBVs and other laminar 
combustion characteristics of CH4.

In view of the above considerations, the first objective is 
to investigate the effect of blending a wide range of CO2 con-
centrations on methane combustion characteristics through 
a combination of experimental and numerical simulations. 
The second objective is to analyze the effect of CO2 on NOx 
generation during methane combustion, from the molar 
amount of NOx to the temperature sensitivity of NOx. There 
have been many studies on the effect of CO2 on methane 
combustion characteristics, but few have addressed the effect 
of CO2 blending into methane in terms of temperature sen-
sitivity and NOx generation. Therefore, this work conducts 
a study on the laminar combustion characteristics and NOx 
emission of methane blended with CO2.

2 � Experiment setup

The laminar premixed flame experimental system is shown 
in Fig. 1. The experimental systems were mainly divided 
into: Bunsen burner, gas delivery system, gas supply sys-
tem and safety system. The Bunsen burner mainly consists 
of a lamp body section and a lamp nozzle connected. The 
inner cavity of the lamp body section is equipped with a 
packing layer, a flow equalizing plate and a sintered net 
from bottom to top. The device plays a role in stabiliz-
ing the flow of the gas mixture flowing through it, and 
the flame ignited from the lamp nozzle is close to being 
conical, so that the detection accuracy of the flame propa-
gation speed can be improved. The gas delivery system is 
completed by mass flow controller (MFC) and mixing tank. 
The brand of MFC is Sevenstar Huachuang CS200 series 
with an accuracy of 0.35% of full scale. The gas supply 
system contains N2, CO2, O2 and CH4 and the purity of 
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CH4, N2, CO2 and O2 are 99.99%. The safety system is tem-
pering valve, which is to prevent the flame from flowing 
back to the mixing tank to explode. After the gas through 
the flowmeter and mixing tank, it passes the channel at 
the bottom of the burner, glass beads, flow equalization 
plates and multi-layer metal sintering net to form a stable 
conical flame at the nozzle. Besides, an industrial camera 
is used to photograph the flame image. The flame images 
are obtained by a CCD camera, model MANTA G-504C 
manufactured in Germany. The CCD camera chip is the 
Sony ICX655, the response frequency range is visible 
light. The image acquisition is realized by connecting the 
CCD camera port with the computer port through a Gigabit 
Ethernet cable. This model of CCD camera can be very 
good completion of the experimental process in the acqui-
sition of flame images.

2.1 � CO2 doping ratio

CH4/CO2/N2/O2 is studied under premixed combustion at 298 
K and 1 atm. The sum of CH4 and dilution is 1, that is, the con-
tent of methane in mixtures decreases with increasing dilution 
gas content. Therefore, the general formula for calculating the 
doping ratio is:

where Vdiluent and Vfuels are volume fractions of dilution gas 
and fuel, respectively. α represents the proportion of dilution 
gas in the mixture.

(1)� =

V
diluent

V
diluent

+ V
fuels

Therefore, in the mixture, α is defined as the CO2 doping 
ratio, and the formula is as follow:

where V
CO

2
 is the volume fraction of CO2. VCH

4
 denotes the 

volume fraction of methane in the mixture. In this paper, 
CH4/O2/N2 mixed with CO2 content of 0%–40% (α = 0, 5%, 
10%, 15%, 20%, 25%, 30%, 35%, 40%) is systematically 
analyzed.

The effect of CO2 on the laminar combustion of meth-
ane is different, because of the different properties of CO2 
and N2. During the experiment of mixing carbon dioxide 
with methane, we found that when the flow rates of methane 
were set at 280 mL/min and 260 mL/min, more experiments 
could be carried out. Therefore, in the experiments of mix-
ing methane with carbon dioxide, the flow rates of methane 
are 280 mL/min and 260 mL/min. Table S1 in Supplemen-
tary information presents the experimental operation of CH4/
Air/CO2 flame.

2.2 � Laminar burning velocity calculation

Figure 2 shows the images obtained by CCD camera. The 
work conditions of Ф = 1.2 are selected to show the images 
of methane mixed with carbon dioxide with doping ratios.

After capturing the images of premixed flame, the MAT-
LAB code is used to calculate the LBVs of mixtures. The 
main steps to obtain the LBVs of CH4 can be found in Ref 

(2)� =
V
CO

2

V
CO

2
+ V

CH
4

Fig. 1   Experimental apparatus 
for the combustion of CH4/air 
mixtures with diluted CO2
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(Chu et al. 2021). Figure 3 gives the main steps to obtain the 
LBVs of CH4 through the MATLAB code.

2.3 � Error analysis

In the process of measuring the LBVs with the Bunsen 
burner, the measurement error is mainly caused by the error 
of the total gas flow rate ( �

Q
 ) and the error generated when 

calculating the flame area ( �
A
 ). The error of the total flow of 

the premixed gas is determined by the error of methane flow 
rate ( �

CH
4
 ), and the accuracy of the methane flowmeter 

is ± 2% of the upset point, the error of the air flowmeter 
( �

air
 ), and the error of CO2 flowmeter ( �

CO
2
 ). The accuracy 

is ± 1% of the set point. According to the error transfer prin-
ciple, the error calculation method in Refs (Chu et al. 2021; 
Moffat 1988) can be used to calculate the total gas flow 
error:

The error of flame area is mainly determined by the 
resolution of the camera and the method of experimental 
photo processing. By calculating the adjacent points of the 

(3)�
Q
=

�

�
2

CH
4

+�2
air
+�2

CO
2

=
√

22 + 12 + 12 =
√

6

Fig. 2   Images obtained from CCD camera under methane/air with different CO2 doping ratios. a α = 5%. b α = 10%. c α = 15%. d α = 20%. e 
α = 25%. f α = 30%. g α = 35%. h α = 40%

Fig. 3   The major steps of calcu-
lating laminar burning velocity 
by MATLAB code
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maximum gradient point in the inner boundary of the flame, 
the error is 4.5% approximately.

The total calculation error of LBV is:

The calculation error of laminar burning velocity is 
approximately 5.1% by calculating.

2.4 � Modeling details

In the simulation, we choose the CHEMKIN-Pro/PRE-
MIXED code to simulate the effect of CO2 on methane 
laminar combustion. Two different reaction mechanisms 
are used for the calculations, the Aramco mech (Metcalfe 
et al. 2013) and the GRI 3.0 mech (Simith et al. 2000) and 
these mechanisms are widely used for the calculations of 
small molecule hydrocarbon fuels. The Armaco mech con-
tains 493 species and 2716 reactions and the GRI 3.0 mech 
contains 53 species and 325 reactions. Since the Aramco 
model does not include the NOx component, the GRI 3.0 
model is used to analyze the effect of CO2 dilution on NOx 
formation. The chemical reactions, thermal properties and 
transport properties database are imported using CHEMKIN 
format. The maximum grid number is set to 500, and the 
parameters chosen for this study ensured grid independence. 
GRAD and CURV are set to 0.04, and the iteration interval 
are − 0.002 to 0.06 m. In addition, the Soret effect is added 
to the simulation. Multicomponent transport is incorporated 
into the reactor. Since the Aramco model does not include 
the NOx component, the GRI 3.0 mech is used to analyze the 
effect of CO2 dilution on NOx formation.

3 � Results and discussion

3.1 � Experiment and mechanism verification

Figure 4 shows the LBVs comparison between GRI 3.0, Ara-
mco and San Diego mech (Prince et al. 2017) under different 
equivalence ratios. GRI 3.0 mech and Aramco mech are in 
good agreement with the measured LBVs of this paper and 
Refs. (Gu et al. 2000; Bosschaart and Goey, 2004; Halter 
et al. 2005; Hu et al. 2009a, b; Hermanns et al. 2010; Dirren-
berger et al. 2011; Mazas et al. 2011; Goswami et al. 2013; 
Akram et al. 2013; Li et al. 2015; Nonaka and Pereira 2016; 
Mitu et al. 2017; Okafor et al. 2018; Han et al. 2019; Wang 
et al. 2020). The yellow–brown represents lean mixture and 
light-cyan represents rich mixture. The predictions of San 
Diego mechanism (Prince et al. 2017) are in good agreement 
with the experimental results in fuel-lean combustion. How-
ever, when equivalence ratio Φ ≥ 1, the predictions of LBVs 

(4)�
L
=

�

�
2

Q
+�2

A
=

�

(
√

6)2 + (4.5)2 ≈ 5.1%

are lower than the experimental results. Therefore, the San 
Diego mechanism is not selected for prediction the combus-
tion characteristics of methane in present work.

3.2 � Effect of CO2 addition on laminar burning 
velocity

In Fig. 5, the solid red line and blue line represent the sim-
ulated results of GRI 3.0 and Aramco mech individually. 
Black dots indicate the LBVs of CH4 measured experimen-
tally, and gray areas represent the prediction difference 
between the two mechanisms. From the results of experi-
ments and mechanism predictions, it can be seen that the 
predicted LBVs of the two mechanisms are not much dif-
ferent when Φ ≤ 1.15, and the simulated values of GRI 3.0 
mech are slightly larger than that of Aramco mech. How-
ever, when the Φ ≥ 1.15, the predictions of Aramco mech 
are higher than that of GRI 3.0 mech. Compared the pre-
dicted results of GRI 3.0 and Aramco mech with the exper-
imental measured LBVs, it is found that the gap between 
experimental results and Aramco mechanism prediction 
results, and the errors between experiment and simulation 
are within 5% at same initial condition. This reveals that 
the process of measuring and calculating LBVs of CH4 
is accurate. As can be seen from Fig. 5, under the same 
CO2 doping ratio, the LBVs ascend first and then descend 
with the increase of equivalence ratio, and when Φ = 1.05, 
the LBVs reach the maximum. The LBVs became lower 
linearly as the CO2 doping ratio increases. This is because 
the doping ratio of CO2 increased, reducing the relative 
percentage of CH4 in the CH4 + CO2 mixture. Another rea-
son is that the specific heat capacity of CO2 is relatively 
large, which will absorb part of the reaction heat (Burbano 
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 Halter et al.(2005)
 Hu et al.(2009)
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Fig. 4   Laminar burning velocities profile for CH4/air mixture at 1 atm 
and 298 K for about 20 years
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et al. 2011), resulting in the reaction rate and tempera-
ture decreased. With the increase of CO2 doping ratio, the 
percentage of activated molecules (CH4 + O2) in reactant 
decreases, which causes the effective collision times per 
unit time decrease. Besides, the movement of molecules 
is decelerated, the number of collisions between reactant 

molecules per unit time presents a downward trend, and 
the reaction rate is decelerated. Thus, temperature and 
LBVs of CH4 decrease. In addition, the Aramco mecha-
nism simulation results are in good agreement with the 
other experiments (Nonaka and Pereira 2016; Zahedi and 
Yousefi 2014).

Fig. 5   Comparison of the meas-
ured laminar burning velocity 
with the simulated values
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3.3 � Adiabatic flame temperature

Figure 6 shows the effect of CO2 addition on peak values of 
AFTs under various equivalence ratios. It can be seen that 
at the same CO2 doping ratio, the change trend of AFTs 
with equivalence ratio is similar to that of LBVs. For exam-
ple, when CO2 doping ratio is 0.1, the AFTs are 1981.30 K, 
2207.15 K and 2107.74 K at equivalence ratios of 0.8, 1.0 
and 1.2, respectively.

At the same CO2 addition, the AFTs decrease with the 
increasing of equivalence ratio, and the change trend is the 
same as that of LBVs. The AFTs are descended with the 
increase of the CO2 doping ratio because the content of 
methane decreases, which leads to lower combustion inten-
sity between fuel and air.

3.4 � Intermediates radicals

Combustion is a quite complex process, and a series of inter-
mediates generated in the combustion processing of meth-
ane. Based on the above view, Aramco mech was selected 
for predicting the effect of CO2 addition on intermediate 
radicals under different conditions. In order to study the 
changes of the intermediate radicals with different working 
conditions, the equivalence ratios of 0.8 (fuel-lean combus-
tion), 1.0 (stoichiometric ratio) and 1.2 (fuel-rich combus-
tion) are chosen for simulation, respectively.

3.4.1 � Effect of CO2 addition on CH3

Figure 7 shows the change trend of mole fraction of interme-
diate radical CH3 with various CO2 contents under different 
equivalence ratios. CH3, as an important intermediate, the 

maximum mole concentration is reached in the beginning 
of the reaction, and completely reacts in a relatively short 
period of time and is no longer generated.

As shown in Fig. 7, firstly, keeping CO2 doping ratio 
unchanged, the mole fraction of CH3 showed a same trend 
with of the change of equivalence ratio. This is because the 
proportion of methane gradually increases with the increas-
ing of equivalence ratio. Therefore, CH3 generated in the 
oxidation process is gradually increasing. Because the oxi-
dation reaction is the most intense in the slightly fuel-rich 
combustion (Φ = 1.05), and the AFT is the highest and the 
LBV is the fastest, the time of CH3 mole fraction reaching 
maximum is first advanced and gradually delayed with the 
increase of the equivalence ratio.

3.4.2 � Effect of CO2 addition on H

Figure 8 shows the effect of CO2 addition on the H under dif-
ferent equivalence ratios. As the basic intermediate radical, 
H has an indispensable relationship with LBV and AFT. It 
reached the maximum mole concentration at beginning of 
the reaction and existed in the subsequent reaction process.

Compared with CH3, under the same equivalence ratio 
and CO2 doping ratio, the maximum mole fraction of H 
appeared later than CH3. This illustrates that the reaction 
for H formation is later than CH3. Moreover, the mole frac-
tion of H is much larger than that of CH3.

As can be seen from Fig. 8, mole fraction of H gradu-
ally increases with equivalence ratio becomes larger under 
the same CO2 content. The maximum mole fraction shows 
a trend of advancing first and then postponing from fuel-
rich to fuel-lean combustion, which is consistent with that 
of CH3. The existence of free radical H lasts longer than 
CH3. There maybe two reasons accounting for this. One is 
that H is decomposed by CH4 continuously in the oxidation 

Fig. 6   Peak values of adiabatic flame temperatures change with dif-
ferent CO2 doping ratios

Fig. 7   Intermediate radical CH3 changes with different CO2 doping 
ratios
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process. The other is that CH3 also decomposes free radical 
H in the oxidation process, which makes radical H existed 
all the time in the whole oxidation process of CH4.

3.4.3 � Effect of CO2 addition on OH

Figure 9 depicts the intermediate radical OH changes with 
different CO2 doping ratios. OH exists all the time in the 
whole combustion process and gradually decreases, with 
a smaller decrease than that of H. It is speculated that O2 
continuously participate in the reaction with CH4 during the 
combustion process, and oxidative decomposition to gener-
ate OH. Under the same CO2 doping ratio, OH generation 
time is advanced and then delayed as the equivalence ratio 
increasing.

3.4.4 � Effect of CO2 addition on O

Figure 10 shows the changes of O at different CO2 doping 
ratios and equivalence ratios. O as one of important interme-
diates, the time from the generation to the maximum mole 
fraction is very short, which is existed in the whole combus-
tion process. From Fig. 10, it can also be found that at the 
same CO2 blending ratio, the maximum mole fraction of O 
drops down slightly with the increasing of equivalence ratio. 
This is because as the equivalence ratio changes from 0.8 
to 1.2, the methane keeps unchanged and the O2 decreases 
gradually. Thus, the proportion of O in the combustion pro-
cess decreases.

3.5 � Effect of CO2 addition on generation of NOx

NOx is main pollutant in the process of fuel combustion in 
internal combustion engine. The majority of nitrogen oxides 
emitted in combustion are NO, followed by NO2 and N2O. 
NO and NO2 can be involved in the formation of acid rain 
and photochemical smog in the atmosphere. N2O is also a 
pollutant of interest in recent years, as it is considered a 
typical greenhouse gas. Therefore, it is great significance to 
investigate the effect of CO2 on NOx formation during meth-
ane combustion for high efficiency and low pollution com-
bustion. Because Aramco mech does not contain NOx, the 
influence of CO2 on methane NOx formation is still predicted 
by GRI 3.0 mech. Fig. S1 in Supplementary information 
depicts the NO generation and AFTs of the article by using 
GRI 3.0 mech compared with the results of other simulation 
mechanisms. Fig. S2 in Supplementary information shows 
the NOx generation of methane mixed with different CO2 
doping ratio when Ф = 0.8, 1.0 and 1.2.

Fig. 8   Intermediate radical H changes with different CO2 doping 
ratios

Fig. 9   Intermediate radical OH changes with different CO2 doping 
ratios

Fig. 10   Intermediate radical O changes with different CO2 doping 
ratios
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3.5.1 � Effect of CO2 addition on generation of NO

Figure 11 depicts the NO generation under equivalence 
ratios of 0.8, 1.0 and 1.2 with various CO2 addition. Accord-
ing to Fig. 11, it can be analyzed that the total NO generation 
decreases with the increase of CO2 addition. It is presumed 
that the generated NOx is thermal NOx.

As can be seen from Fig.  11, the equivalence ratio 
increases from 0.8 to 1.0, and the NO generation amount 
increases by 5 times. It is speculated that the equivalence 
ratio increases from 0.8 to 1.0, and the adiabatic flame tem-
perature gradually increases, which results in an increase in 
thermal NOx.

3.5.2 � Effect of CO2 addition on generation of NO2

Figure 12 shows the effect of various CO2 doping ratio on 
NO2 emissions at different equivalence ratios. NO2, as an 

intermediate, its variation trend is similar to CH3, but the 
difference is that the amount of NO2 increases monotonously 
with the increase of the amount of CO2. Keeping equiva-
lence ratio unchanged, the maximum mole fraction of NO2 
increases and the corresponding time of reaching maximum 
mole fraction later with the increase of CO2. When Φ = 0.8, 
maximum mole fraction of NO2 and the time of reaching the 
maximum mole fraction do not change much. The highest 
concentration and the time of reaching highest concentration 
is changed obviously while Φ = 1.2.

3.5.3 � Effect of CO2 addition on generation of N2O

N2O is a typical greenhouse gas, but the combustion rate can 
increase by the efficient use of N2O. Figure 13 depicts the 
changes of N2O generation at different equivalence ratios 
and CO2 doping ratios. It can be seen that N2O is an inter-
mediate with a low mole fraction. The generation time and 
the time of reaching the highest mole fraction is delayed by 
blending N2O, and the highest mole fraction increases.

At any equivalence ratio, the maximum N2O mole frac-
tion has a similar trend with the increase of CO2 dilution. 
However, in the subsequent combustion process, the mole 
fraction decreases as the increasing of blending CO2.

3.6 � Sensitivity analysis

In order to further reveal the impact of blending CO2 on 
intermediate radicals and NOx emissions, the maximum gra-
dient point of temperature is chosen for sensitivity analysis 
of the effect of CO2 addition on CH4 combustion (Dong et al. 
2020, 2021). Armaco mech is used to analyze the effect of 
CO2 addition on intermediate radicals and GRI 3.0 mech is 
used to analyze the effect of CO2 addition on NOx.

3.6.1 � The sensitivity analysis of NO

Figure 14 describes the effect of CO2 blending on NO pro-
duction of methane combustion products under different 
equivalence ratios. The starting path of thermal NOx is R178 
N + NO = N2 + O and N free radicals are quickly consumed. 
From the sensitivity analysis of NOx, it can be seen that 
the effect on NO production is greater than that of inhibi-
tion. R38 H + O2 ⇔ O + OH and R240 CH + N2 ⇔ HCN + N 
mainly promote the generation of NO. R35 H + O2 + H2 ⇔ 
HO2 + H2O, R125 CH + O2 ⇔ O + HCO and R52 CH3 + H 
(+ M) ⇔ CH4 (+ M) have strong inhibitory effect on NO 
production at fuel-lean, stoichiometric ratio and fuel-rich 
combustion.

For the same elementary reaction, such as R38 H + O2 ⇔ 
O + OH, the change trend of sensitivity coefficient is consist-
ent with the equivalence ratio. When Ф = 1, the sensitivity 
coefficient of R125 CH + O2 ⇔ O + HCO decreases with 

Fig. 11   NO emissions changes with different CO2 doping ratios

Fig. 12   NO2 emissions changes with different CO2 doping ratios
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the CO2 doping ratio increases. Different from the change 
of intermediate radicals, for the same elementary reaction, 
taking R38 H + O2 ⇔ O + OH as an example, the sensitiv-
ity coefficient increases continuously with the increase of 
equivalence ratio, rather than a trend of first increasing and 
then decreasing.

3.6.2 � The sensitivity analysis of NO2

As can be seen from Fig. 15, different from the effect on 
NO, R38 H + O2 ⇔ O + OH is to inhibit NO2 generation. 
R52 CH3 + H (+ M) ⇔ CH4 (+ M) has dominant effect on 
promoting NO production at all equivalence ratio. In the top 
10 elementary reactions, the number of elementary reactions 
promoting NO2 generation increases first and then decreases 
with the increase of equivalence ratio.

At any equivalence ratio, the sensitivity coefficients of 
R38 H + O2 ⇔ O + OH and R52 CH3 + H(+ M) ⇔ CH4(+ M) 
increases with the increase of CO2 doping ratio. And the 
CO2 addition increases, the increase amplitude is also 
enhanced.

3.6.3 � The sensitivity analysis of N2O

As can be seen from Fig. 16, R38 H + O2 ⇔ O + OH pro-
motes N2O generation at all equivalence ratios, which is 
the reaction with the largest sensitivity coefficient among 
the top 10 elementary reactions. When the Ф is less than or 
equal to 1.0, R183 N2O + H ⇔ N2 + OH mainly inhibits N2O 
formation, and the sensitivity coefficient does not change 
much with the increase of the CO2 ratio. R52 CH3 + H(+ M) 
⇔ CH4(+ M) is inhibited the generation of N2O at Φ = 0.8, 

Fig. 13   N2O emissions changes with different CO2 doping ratios
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Fig. 14   Sensitivity coefficients 
with respect to the elementary 
reactions for NO under different 
CO2 doping ratios
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Fig. 15   Sensitivity coefficients 
with respect to the elementary 
reactions for NO2 under differ-
ent CO2 doping ratios
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Fig. 16   Sensitivity coefficients 
with respect to the elementary 
reactions for N2O under differ-
ent CO2 doping ratios
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Fig. 17   Sensitivity coefficients 
with respect to the elementary 
reactions for CH3 under differ-
ent CO2 doping ratios
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1.0 and 1.2, and the sensitivity coefficient increases with 
increasing CO2 addition.

3.6.4 � The sensitivity analysis of CH3, H, OH and O

According to the results, when the CO2 doping ratio stays 
unchanged, the sensitivity coefficient decreases first and 
then increases as the increasing of equivalence ratio. In the 
top 10 reactions that have a great influence on formation of 
CH3, the sensitivity coefficient of reactions that promote the 
generation of CH3 with the increase of the equivalence ratio 
decreases and then increases. The change trend is opposite 
to that of LBVs, AFTs, intermediate radicals.

At the same equivalence ratio, it can be seen in Fig. 17 
that the CH3 sensitivity coefficient increases with the 
increase of the CO2 addition, and the increase in sensitivity 
coefficient becomes larger with the increase of CO2 addi-
tion. This is because with the increasing of CO2 addition, 
the decrease in AFT gradually increasing and the sensitiv-
ity coefficient becomes larger, which means the reactions 
become more sensitive with temperature change. The gen-
eration of CH3 is promoted by R1 H + O2 ⇔ O + OH. When 
Φ = 0.8, R9 H + O2(+ M) ⇔ HO2(+ M) plays the main role 
of inhibition. When Φ is greater than or equal to 1, R127 
CH3 + H(+ M) ⇔ CH4(+ M) has a negative effect on genera-
tion of CH3.

Figures S3–S5 in Supplementary information report the 
H, OH and O sensitivity coefficients with respect to the 
elementary reactions, respectively.

4 � Conclusions

In this paper, CO2 is used as an additive to study its blending 
on the methane laminar combustion characteristics and the 
NOx emission characteristics. The study starts from study-
ing the effect of blending a wide range of CO2 concentra-
tions on the methane combustion characteristics through a 
combination of experiments and numerical simulations. The 
second mission is to analyze the effect of CO2 on NOx pro-
duction during methane combustion from the molar amount 
of NOx to the temperature sensitivity of NOx. The reliabil-
ity of the simulation results is verified by comparing the 
laminar burning velocity measured by Bunsen burner with 
CHEMKIN simulations, with the main parameter being the 
laminar combustion velocity. With the increase of equiva-
lence ratio, laminar burning velocity increases first and then 
decreases. The laminar burning velocity reaches the maxi-
mum when the equivalence ratio is 1.05. GRI 3.0 mech and 
experimental results have good agreement in measuring the 
laminar burning velocity of pure CH4, but after blending 
CO2, the laminar burning velocity predicted by the Aramco 

mechanism is highly fitted to the experimental results. The 
predictions of the two mechanisms are different. When Φ is 
less than or equal to 1.15, the prediction of GRI 3.0 mech is 
greater than that of Aramco mech, but when Φ > 1.15, the 
predicted result by Aramco mech is greater than the simu-
lated value of GRI 3.0 mech. At any equivalence ratio, the 
laminar burning velocity of CH4 decreases with the increase 
of CO2 addition. Blending carbon dioxide absorbs the heat 
of reaction in the combustion process, resulting in a decrease 
in the adiabatic flame temperature. Aramco mech is selected 
to analyze the effect of CO2 addition to the adiabatic flame 
temperature, intermediate radicals, and the sensitivity analy-
sis of the intermediate radicals, it was found that adiabatic 
flame temperature and the maximum mole fraction of the 
intermediate radicals decreases after blending CO2. Through 
sensitivity analysis, it is found that the elementary reaction 
H + O2 ⇔ O + OH always promotes the generation of free 
radicals, and the sensitivity coefficient of the elementary 
reaction gradually decreases with the increase of CO2 dop-
ing ratio. The effect of CO2 on the NOx emissions (NO, 
NO2 and N2O), and sensitivity analysis of NOx formation is 
predicted by GRI 3.0 mech. The results of numerical simu-
lation show that the amount of NOx generates or the maxi-
mum mole fraction point decreases by blending CO2. The 
elementary reaction H + O2 ⇔ O + OH also always promotes 
NOx emission. The results of this study show the effect of 
CO2 on methane combustion characteristics and NOx emis-
sion, which provides insight for further effective utilization 
of CO2. However, subsequent studies can be conducted by 
only verifying the effect of CO2 on methane, and subsequent 
studies should be conducted for the blending of CO2 with 
macromolecular hydrocarbon fuels and oxygenated fuels.
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