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Abstract
Room and pillar mining is an underground mining method that utilizes natural pillar support to control rock mass behavior, 
ensuring mine stability and a safe mine environment. This study specifically documents the influence of the intermediate 
principal stress component on the pillar behavior. So far only classical failure criteria ignoring the influence of the intermedi-
ate principal stress component were used for underground pillar design. By using an extended Hoek–Brown failure criterion 
in comparison with the classical Hoek–Brown failure criterion, the influence of the intermediate principal stress component 
is documented by indicating those areas where the failure criterion is violated. This study demonstrates, that depending on 
the rock type, the intermediate principal stress component can have a significant effect. Ignoring this influence can lead to 
uneconomic pillar design and incorrect determination of the factor of safety.

Keywords  Hoek–Brown failure criterion · Intermediate principal stress component · Pillar Strength · Room and pillar 
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1  Introduction

Room and pillar mining is a common underground min-
ing method that utilizes natural pillar support to stabilize 
the underground workings and deformation control. A 
well-designed pillar system ensures safety of miners and 
equipment, minimize ore dilution, maximizes productivity, 
extends mine life, maintains stability of mine structure as 
well as cost-effective and ecological rehabilitation (Potvin 
et al. 1990). The most important parameters for room-and-
pillar design are depth, orebody strength properties, in-situ 
stresses, pillar geometry, presence of joint sets or faults, 
weathering of the rock mass and other prevailing environ-
mental conditions (Sheorey et al. 1986). Empirical methods 
for pillar design are preferred due to their convenience to 
apply (Kidega et al. 2022) (Hedley, D.G.F., Grant 1972) 
(Von Kimmelmann et al. 1984) (Krauland, N., Soder 1987) 
(Sjoberg 1992) (Potvin et al. 1990) (Lunder, P.J., Pakalnis 

1997). However, these empirical pillar design formulas 
have some inherent simplistic assumptions and weaknesses 
such as inability to consider complex situations, character-
ized by various factors such as complex in-situ stresses, 
existence of faults and fractures or other weak inclusions, 
irregular shape of ore bodies, topography and complex pil-
lar geometry (Wagner 2003). Numerical simulations are a 
good alternative for mine design and they are already used 
on a routine basis using classical failure criteria based 
solely on maximum and minimum principal stresses, like 
the Mohr–Coulomb or Hoek–Brown (HB) failure criteria. 
However, researches have demonstrated at the laboratory 
scale that the intermediate principal stress effects the fail-
ure strength of rocks, for instance:(Kwaśniewski 2013) 
(Feng et al. 2016),(Mogi 1972),(Feng et al. 2019),(Feng 
et al. 2020) (Zhang et al. 2013) (Jiang and Zhao 2015). The 
extended and classical Hoek Brown criteria can estimate 
the strength of intact rock as well as jointed rock masses 
by reduction of strength parameters on the basis of rock 
mass classifications or engineering geological data to suit 
the rock mass behavior under consideration, like demon-
strate for instance by (Li et al. 2021) (Hoek and Brown 2019) 
(Hoek et al. 2002). At the field scale, geotechnical engi-
neering focus on pillar design under the assumption that the 
intermediate principal stress component, has insignificant 
contribution to the strength (C.D Martin, W.G Maybee 2000) 
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(Esterhuizen 2007) (Maleki 2017). However, like shown 
recently by (Chen et al. 2023) for slope stability analysis, 
the intermediate principle stress component can have some 
influence on the stability and failure behavior.

This article documents exemplary that the intermediate 
principal stress component can have a significant influence 
on the strength and consequently on the load bearing capac-
ity of mine pillars.

2 � Extended three‑dimensional Hoek–Brown 
failure criterion

The failure criterion proposed by (Li et al. 2021), which is an 
extended version of the classical HB-criterion considering 
the intermediate principal stress component, was selected 
because it can be expressed analytically by two equations if 
the stress space is subdived in two parts as shown in Fig. 1 
and given by Eqs. (1) and (2).
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All the parameters of the extended HB-criterion can be 
determined from uniaxial and triaxial tests. Laboratory test-
ing has documented that peak triaxial strength can be 
increased by up to about 20% for certain types of rock and 
optimum values of σ
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2022) (Feng et al. 2016) (Walton 2021) (Mogi 1971) (Ingra-
ham et al. 2013). Equation (1) shows that for low σ

2
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3
 of 

the classical HB-criterion can be replaced by b�2+�3
b+1

 and 
Eq. (2) shows that for high σ

2
 , σ

1
 of the classical HB-crite-

rion can be replaced by b�2+�1
b+1

 . The value b controls the shape 
of the failure envelope. The intermediate principal stress 
component increases the strength and a value of b = 0 (ignor-
ing the intermediate principal stress component) signifies 
the lower bound of the strength envelop or with other words, 
the classical HB-criterion is always conservative. A simple 
test of Eqs. (1) and (2) can be used to decide which equation 
should be applied for the actual stress state: the equation 
giving the lower values for �

1
 has to be used for the extended 

HB-criterion (see also flowchart in Fig. 3).

3 � Numerical analysis

3.1 � Numerical model set‑up and calculation 
procedure

To investigate the potential effect of the intermediate princi-
pal stress component in general, a 3-dimensional numerical 
pillar model was set-up on the basis of the explicit finite dif-
ference code FLAC3D. In this study, we consider a pillar situ-
ated in a large field of pillars (regular room and pillar mining 
scheme) under assumption of quasi-isotropic and quasi-
homogeneous material behavior, which allows to reduce 
the model to a ¼-model. The model set-up is illustrated in 
Fig. 2 representing a ¼-model of a pillar with adjacent room.

The outer model dimensions are 8 m × 7 m × 20 m. The 
pillar height is 5 m, and width and length are of the pillar are 
3.5 m and 4 m, respectively. The virgin stress state is charac-
terized by a vertical stress component of 25 MPa and hori-
zontal stresses of 12.5 MPa. At model bottom and vertical 

Fig. 1   Extended HB-criterion for different values of parameter b (Li 
et al. 2021)

Fig. 2   Numerical model set-up (left: virgin rock mass, right: after 
excavation)
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outer boundaries, the normal displacements are fixed. At the 
top of the model, a vertical pressure of 25 MPa is applied. 
The zones are densely populated at the area of excavation 
to increase accuracy, with each zone occupying a volume of 
0.0047 m3. In the floor and roof regions, each zone occupies 
0.125 m3. There are 67,200 zones in the model before exca-
vation with total volume of 910 m3. The material parameters 
for the classical HB-model used for this exemplary study are 
given in Table 1.

Stress-strength analysis under pure elastic conditions is 
conducted to evaluate the violation of failure envelope by 
verifying the actual stress state violates the yield surface of 
the classical and extended HB-criteria. The purpose is to iden-
tify zones of potential failure around the mine pillar. For this 

evaluation the parameters k
1
 , k

2
 and k

3
 are determined for each 

zone. Equations 3 and 4 specify the extended HB-criterion 
and Eq. (5) the classical HB-criterion adopted from (Li et al. 
2021). The flowchart shown in Fig. 3 is used to determine 
the stability numbers k

1
 , k

2
 and k
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 to identify zones, where 

the failure criterion is violated for the classical as well as the 
extended HB-criterion. k
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Table 1   Mechanical properties of the Chelungpu siltstone I (Li et al. 2021) for the classical HB-criterion

Density (kg/m3) Shear Modulus (GPa) Bulk Modulus (GPa) a s Parameter (mi) Unconfined compressive strength (MPa)

2500 60 40 0.5 1 13.91 77

Fig. 3   Flowchart to detect zones 
violating the failure envelope
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4 � Simulation results

K-values equal or greater than 1 indicate a violation of the 
strength criterion. For b-value of zero the classical HB-
criterion coincides with the extended HB-criterion as illus-
trated by Fig. 4. Therefore, region of strength exceedance is 
24.21m3 for all three cases ( k

1
 , k

2
 and k

3
).

The selected rock (Chelungpu siltstone I) according to Li 
et al. (Li et al. 2021) has a b-value of 0.464. Figure 5 shows 
the simulation results for the k-values. Strength violation 
according to k

1
 is concentrated at the middle of the pillar 

height, whereas k
2
 is concentrated at the transition from the 

pillar to the roof and floor area. Considering the realistic 
b-value of 0.464, the volume of strength exceedance (8.02 
and 6.09 m3, respectively, in total 14.11 m3, see Figs. 5a 
and b) is much smaller than predicted by the classical HB-
criterion with 24.21 m3.

The Fig. 6a and b shows the results when parameter b is 
zero (ignoring the influence of the intermediate principal 
stress) and 0.464, respectively. The volume of plastic zones 
indicated by pink colored zones (> 1.0) are 24.21m3 and 
14.11m3 for classical and extended Hoek Brown criteria, 
respectively. This implies that the intermediate principal 
stress component has strengthening effect on pillar stability.

Figure 7 illustrates the effect of different b-values on the 
extent of the area with strength violation. According to (Li 
et al. 2021) realistic b-values can range from about 0.2 to 
nearly 1.0 depending on the type of rock. Table 2 shows the 
total volume of zones with strength exceedance by applying 
different b-values.

5 � Conclusions

Although laboratory tests have documented the influ-
ence of the intermediate principal stress component, this 
knowledge is yet to be fully incorporated and integrated 
into the engineering practice, where still strength crite-
ria ignoring the influence of the intermediate principal 
stress component like the classical Mohr–Coulomb or the 
classical HB-criterion are dominating. Applying these 
classical approaches is always conservative in terms of 
safety and stability considerations. However, consideration 
of the intermediate principal stress component leads to a 
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Fig. 4   Values a k
1
 and b k

2
 for the extended HB-criterion with 

b-value of zero and c k
3
 for the classical HB-criterion
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more realistic assessment of rock and rock mass strength 
and allows consequently a more economic mine design as 
presented exemplary for the pillar design. Depending on 
rock type and stress situation this effect can be quite sig-
nificant. Therefore, recognizing the great practical impor-
tance, incorporation of the intermediate principal stress 
component for pillar design and safety considerations is 
highly recommended.

The authors acknowledge that direct application of 
laboratory results (parameters) for in-situ dimensioning 
might not be appropriate due to the scale effect, Never-
theless the stabilizing effect of the intermediate principal 
stress component remains effective in an in-situ scenario.

Fig. 5   Values a k
1
 and b k

2
 considering a b-value of 0.464 and c for 

the classical HB-criterion

Fig. 6   Regions of strength exceedance zones for a classical HB-crite-
rion and b extended HB-criterion with b-value of 0.464
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