# Current status and technical challenges of CO<sub>2</sub> storage in coal seams and enhanced coalbed methane recovery: an overview

Xiaochun Li · Zhi-ming Fang

Received: 30 November 2013/Revised: 17 December 2013/Accepted: 18 December 2013/Published online: 19 August 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

**Abstract** In the past two decades, research on  $CO_2$  storage in coal seams and simultaneously enhanced coalbed methane recovery (ECBM) has attracted a lot of attention due to its win–win effect between greenhouse gas ( $CO_2$ ) emission reduction and coalbed methane recovery enhancement. This paper presents an overview on the current status of research on  $CO_2$ -ECBM in the past two decades, which involves  $CO_2$  storage capacity evaluations, laboratory investigations, modelings and pilot tests. The current status shows that we have made great progress in the ECBM technology study, especially in the understanding of the ECBM mechanisms. However, there still have many technical challenges, such as the definition of unmineable coal seams for  $CO_2$  storage capacity evaluation and storage site characterization, methods for  $CO_2$  injectivity enhancement, etc. The low injectivity of coal seams and injectivity loss with  $CO_2$  injection are the major technique challenges of ECBM. We also search several ways to promote the advancement of ECBM technology in the present stage, such as integrating ECBM with hydraulic fracturing, using a gas mixture instead of pure  $CO_2$  for injection into coal seams and the application of ECBM to underground coal mines.

Keywords CO<sub>2</sub> storage in coal seams · ECBM · Permeability · Hydraulic fracture · Gas mixture

# 1 Introduction

Carbon dioxide (CO<sub>2</sub>) is one of the main greenhouse gases which cause the global warming. A major source of anthropogenic CO<sub>2</sub> is the combustion of fossil fuels to generate electricity. Mitigation and controlling CO<sub>2</sub> emission are critical to address the greenhouse effect. CO<sub>2</sub> geological utilization and storage (CGUS) is believed to be an effective CO<sub>2</sub> emission reduction option (Xie et al. 2013). One of the CGUS technologies is to inject CO<sub>2</sub> into coal seams to displace CH<sub>4</sub>. In the process, CH<sub>4</sub> can be utilized as a clean energy resource, and CO<sub>2</sub> can be stored in coalbed mainly by the mechanism of adsorption called CO<sub>2</sub>-ECBM. The advantage of CO<sub>2</sub>-ECBM over other CGUS options is that the value of  $CH_4$  produced helps to alleviate partly or wholly the storage costs (Gale and Freund 2001). Therefore, in the past two decades, the research on CO<sub>2</sub>-ECBM has attracted a lot of attention.

In this paper, we firstly present an overview of the current status of research on  $CO_2$ -ECBM in the past two decades, which involves  $CO_2$  storage capacity evaluations, laboratory investigations, modelings and pilot tests; then some technical challenges of  $CO_2$ -ECBM are described; finally, we search several ways to promote the development of ECBM technology in the present stage.

## 2 Current status of CO<sub>2</sub>-ECBM

Due to the past two decades' study, great progresses have been made in ECBM technology, especially in evaluations of CO<sub>2</sub> storage capacity in coal seams, laboratory studies related to CO<sub>2</sub>-ECBM mechanisms, modelings of CO<sub>2</sub>-ECBM process and also we have conducted some pilot/demonstration tests.

X. Li  $\cdot$  Z. Fang ( $\boxtimes$ )

State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China e-mail: zhmfang2002@163.com

| Scale             | $CO_2$ storage<br>capacity (×10 <sup>9</sup> t) |               |                 | Reference                                                        |  |
|-------------------|-------------------------------------------------|---------------|-----------------|------------------------------------------------------------------|--|
| World             |                                                 |               |                 |                                                                  |  |
|                   | 0 (low)                                         | 267<br>(best) | 1,480<br>(high) | Hendriks et al. (2004)                                           |  |
|                   | 150                                             |               |                 | Stevens et al. (2001)                                            |  |
|                   | 3–15<br>(low)                                   |               | 200<br>(high)   | Intergovernmental<br>Panel on<br>Climate Change<br>(IPCC) (2005) |  |
| Europe            |                                                 |               |                 |                                                                  |  |
|                   | 1.5                                             |               |                 | Vangkilde-Pedersen et al. (2009)                                 |  |
| Country           |                                                 |               |                 |                                                                  |  |
| China             | 12.078                                          |               |                 | Liu et al. (2005)                                                |  |
|                   | 142.672                                         |               |                 | Yu et al. (2007)                                                 |  |
|                   | 9.881                                           |               |                 | Fang and Li (2013a)                                              |  |
| Netherlands       | 8                                               |               |                 | Hamelinck et al. (2000)                                          |  |
| Japan             | 0.625                                           |               |                 | Yamazaki et al. (2006)                                           |  |
| Coal basin/reg    | ion                                             |               |                 |                                                                  |  |
| San Juan          | 1.4                                             |               |                 | White et al. (2005)                                              |  |
| Bowen             | 0.87                                            |               |                 | White et al. (2005)                                              |  |
| Ordos             | 0.66                                            |               |                 | White et al. (2005)                                              |  |
| Sydney            | 0.15                                            |               |                 | White et al. (2005)                                              |  |
| Western<br>Canada | 0.17                                            |               |                 | White et al. (2005)                                              |  |

Table 1 Some evaluation results of  $CO_2$  storage capacity in coal seams

#### 2.1 Evaluations of CO<sub>2</sub> storage capacity in coal seams

Much research has been done to develop and advance the coal seam  $CO_2$  storage technology, especially storage capacity evaluation study. Previous studies have shown that there were large capacities of  $CO_2$  storage in coal seams in the world (Intergovernmental Panel on Climate Change (IPCC) 2005; Gale and Freund 2001), countries (Liu et al. 2005), basins or regions (Bachu 2007; Kronimus et al. 2008; Vincent et al. 2011). Some evaluation results of  $CO_2$  storage capacity in coal seams are presented in Table 1.

However, evaluations of  $CO_2$  storage capacity in coal seams are uncertain due to insufficient data and previous evaluations are usually based on many assumptions (White et al. 2005). For example, in the capacity evaluation study, the so-called unmineable coalbeds usually refer to coalbeds at maximum buried depth of 800 or 1,000 m (Bachu 2007) or more shallow. But, with the development of technology, coals buried at this depth may eventually be mined in the future, and much of the capacities will go unused.

#### 2.2 Laboratory studies related to CO<sub>2</sub>-ECBM

Laboratory studies related to  $CO_2$ -ECBM focus mainly on multicomponent gas competitive adsorption, supercritical  $CO_2$  adsorption, adsorption induced coal swelling and its influence on coal permeability and injectivity.

#### 2.2.1 Multicomponent gas competitive adsorption

Researchers generally believe that the adsorption of each component in gas mixture is not independent, and there are competitions among different gases. Binary gas adsorption isotherm is always between the isotherms of high adsorption capacity gas and low adsorption capacity gas. Different gas compositions can result in different isotherms. Multicomponent gas isotherm is more complex due to gas compositions affected (Krooss et al. 2002). Zhang et al. (2005) reported that there was a significant difference between multicomponent gas adsorption and pure gas adsorption, but the isotherms matched the Langmuir equation for both gas mixture and pure gas. (Mazumder et al. 2006) studied the adsorption characteristics of pure  $CO_2$  and flue gas. Busch et al. (2003) investigated the preferential adsorption of characteristics of CH<sub>4</sub> and CO<sub>2</sub> on coal under high pressure (25 MPa) condition. Their results showed that CH<sub>4</sub> at low pressure was easier to be adsorbed than CO<sub>2</sub>, but at pressure above 5 MPa, CO<sub>2</sub> was more affinitive to coal than  $CH_4$ . Fitzgerald et al. (2005) measured the isotherms of CH<sub>4</sub>, N<sub>2</sub>, CO<sub>2</sub> and the binary and ternary mixture. Gruszkiewicz et al. (2009) studied the sorption kinetics of CO<sub>2</sub>, CH<sub>4</sub> and their proportional mixture.

#### 2.2.2 Adsorption induced coal swelling

Adsorption of  $CO_2$  may induce coal matrix swelling. This results in the reduction of permeability and injectvity which had been observed by field test (Reeves 2004). Therefore, the investigation on coal swelling induced by CO<sub>2</sub> adsorption is very important. Day et al. (2008) observed the coal swelling at high pressure CO<sub>2</sub> atmosphere by the optical method. Mazumder and Wolf (2008) measured the swelling of the coal in CO<sub>2</sub>-ECBM experiment, and studied the effects of CO<sub>2</sub> injection on coal porosity and permeability theoretically. Goodman et al. (2006) studied the structural changes of unconstrained powdered coal contacted with CO<sub>2</sub>. Romanov and Soong (2008) studied the differences between block sample swelling and powdered sample swelling with CO<sub>2</sub> absorbed. Their results showed that CO<sub>2</sub> adsorption on block coal caused 7 % expansion and the swelling rate of powdered sample was 8 %. Fang and Li (2012) studied coal swelling under stress condition by adsorption of CO<sub>2</sub>, N<sub>2</sub> and  $CH_4$ , respectively. Romanov et al. (2006) investigated the influences of  $CO_2$  adsorption induced coal swelling on the adsorption capacity measurement.

# 2.2.3 Influences of gas injection on coal permeability and injectivity

Under reservoir conditions, the sorption-induced coal matrix swelling may affect the flow characteristics of gas in coal, such as coal permeability and injectivity. Coal permeability is an important parameter related to the coalbed methane (CBM) production and the ECBM operation. Therefore, it is significant to investigate the influences of gas injection on coal permeability. Guo et al. (2008) investigated the permeability changes during CBM and ECBM process in the laboratory. Fang and Li (2012) and (Fang et al. 2013) studied coal permeability changes with different gas adsorption. Lin et al. (2007) studied the relationship among coal absolute permeability, pore pressure and gas components. Durucan et al. (2008) simultaneously measured gas adsorption or desorption induced coal train and permeability changes. Han et al. (2008) measured coal permeability and breakthrough pressure of N<sub>2</sub> and CO<sub>2</sub> by single-phase and two-phase flow and adsorption experiments. Shi et al. (2008) investigated CO<sub>2</sub>-CH<sub>4</sub> convection-diffusion phenomena in a coal matrix. Viete and Ranjith (2006) investigated the  $CO_2$  adsorption influences on coal compression strength and permeability under uniaxial and triaxial condition.

## 2.3 Modelings of CO<sub>2</sub>-ECBM

 $CO_2$  storage in coal seams and enhanced coalbed methane is actually a multi-physics process coupled with competitive adsorption/desorption, diffusion and gas–water multiphase flow.

#### 2.3.1 Multicomponent adsorption theory

Numerous studies show that  $CH_4$  and other gases adsorption on coal are monolayers physical adsorption, and the isotherms fit well with Langmuir model. For multicomponent gas system in ECBM process, extended Langmuir model is usually used to describe the competitive adsorption characteristics (Sun 2004).

## 2.3.2 Diffusion theory

Gas migration on coal matrix is generally believed to be driven by diffusion (Thimons and Kissell 1973; Gray 1987a, 1987b). In the process of gas injection into coal, convection–diffusion exists between injected gas in cleats and  $CH_4$  in matrix. With this mechanism,  $CH_4$  is displaced by injected gas.

## 2.3.3 Flow theory

Fluid flow in coal is a process combining multicomponent gas, water and coal. The simulation model should consider multicomponent gas adsorption/desorption, diffusion, sorption-induced coal swelling which induces permeability change, and the interaction between flow field and stress field. Ozdemir (2004, 2009) established a CO<sub>2</sub>-CH<sub>4</sub>-water flow model to simulate the process of CO<sub>2</sub> storage in coal seams and enhanced coalbed methane recovery by Athena Visual programming package. Ozdemir's model did not consider the sorption-induced swelling. Manik (1999) developed a two-phase flow composition model to simulate the ECBM process. His model included multicomponent gas and water. Seto et al. (2006) established a four components (CO<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>O) model for CO<sub>2</sub> storage in coal seams and ECBM simulation. Fang (2009) developed a multiphase flow-solid coupled model to simulate the ECBM process.

## 2.3.4 ECBM simulator

Existing CBM numerical simulators which are developed for the primary CBM recovery process have many important features considered, such as: (1) a dual porosity system, (2) Darcy flow in the natural fracture system, (3) pure gas diffusion and adsorption in the primary porosity system and (4) coal shrinkage due to gas desorption.

However, the process becomes more complex with  $CO_2$  injection. Additional features have to be considered (Law et al. 2002), such as: (1) coal swelling due to  $CO_2$  adsorption on coal, (2) mixed gas adsorption, (3) mixed gas diffusion and (4) non-isothermal effect for gas injection. Simulators currently widely used for ECBM simulation include some commercial simulators, such as GEM, ECLIPSE, SIMED II, COMET2 etc., and non-commercial simulators such as GCOMP and so on. Law et al. (2002) compared their features in detail. The features of the above simulators are shown in Table 2.

In addition to these popular simulators, some researchers have also developed their own simulators for ECBM simulation. METSIM2 is a three-dimension two-phase multicomponent simulator. The simulator takes into account the competitive adsorption of multicomponent gas mixture and the dynamic evolution model of coal seam permeability (Shi and Durucan 2005). Law (2003) also compared it with other simulators in his comparison study. U.S. Sandia Nationa Laboratory modified TOUGH2 for ECBM simulation (Sandia National Laboratories 2003). CBM-SIM, a specialized unconventional oil and gas reservoir simulation

| Table 2 Features of | f main E | ECBM sim   | ulators |
|---------------------|----------|------------|---------|
| Table 2 Teatures (  | i mam E  | CDWI SIIII | ulators |

| Features                                | Simulator    |              |              |              |              |  |
|-----------------------------------------|--------------|--------------|--------------|--------------|--------------|--|
|                                         | GEM          | ECLIPSE      | COMET        | SIMED<br>II  | GCOMP        |  |
| Multi-<br>component<br>gas              | $\checkmark$ | ×            | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Dual porosity                           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            |  |
| Mixed gas<br>diffusion                  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            |  |
| Mixed gas<br>adsorption                 | $\checkmark$ | ×            | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Dynamic<br>permeability<br>and porosity | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Coal swelling/<br>shrinkage             | $\checkmark$ | ×            | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |

software, was also used for  $CO_2/N_2$ -ECBM simulation. The IPARS-CO<sub>2</sub> Parallel Thermal Compositional Simulator developed by The University of Texas at Austin can also be used for ECBM simulation. Syahrial and Lemigas (2005) developed a simulator named LEMIGAS to simulate ECBM and CO<sub>2</sub> sequestration in coal.

## 2.4 CO<sub>2</sub>-ECBM pilot/demonstration tests

From the 1990s to date, more than ten ECBM pilot/demonstration tests have been conducted in the world (as shown in Table 3). They are mainly operated in United States, Canada, Poland, Japan and China. Every tests are described in detail as follow:

Table 3 ECBM pilot/demonstration test projects in the world

#### 2.4.1 ECBM pilot/demonstration tests in United States

2.4.1.1 Allison unit project The Allison Unit project is the first and the largest CO<sub>2</sub>-ECBM pilot test in the world (Reeves and Oudinot 2004). There are four CO<sub>2</sub> injection wells and nine CH<sub>4</sub> production wells in this project. Formerly, the nine wells had been produced using conventional pressure-depletion methods for more than five years. CO<sub>2</sub> injection began at 1995. After almost five years of injection, about 277 kt CO<sub>2</sub> had been injected. Due to CO<sub>2</sub> injection, the CH<sub>4</sub> recovery ratio had been enhanced by 150 % was up to 95 %.

2.4.1.2 Tanquary well project The Tanquary test was designed to determine the CO<sub>2</sub> storage capacity, injection rate and the ECBM recovery potential of Illinois Basin coal. The pilot's injection formation was the Springfield coal, high volatile bituminous rank, thickness 7 ft, depth 900 ft, desorbed gas content ranged 150-210 cf/ton (dmmf) primarily methane (MGSC web 2013). A four-well design, consisting of an injection well and three monitoring wells, was developed and implemented, based on numerical modeling and permeability estimates from literatures and field data. Injection of CO2 gas took place from June 25, 2008 to January 13, 2009. A "continuous" injection period ran from July 21, 2008 to December 23, 2008, but the injection was suspended several times during this period due to equipment failures and other interruptions. Approximately 102 tons of CO<sub>2</sub> was injected over the duration of the project. Monitoring results showed that there was no CO<sub>2</sub> leakage into groundwater or CO<sub>2</sub> escape at the surface (Finley and Moulton 2012).

| Project name                                                           | Country | Location              | Project/injection start time | Total CO <sub>2</sub><br>injected (t) | Coal<br>depth(m) |
|------------------------------------------------------------------------|---------|-----------------------|------------------------------|---------------------------------------|------------------|
| Allison unit project                                                   | America | New Mexico            | -/1995                       | 277,000                               | 950              |
| Tanquary well project                                                  | America | Southeastern Illinois | -/2008                       | 91                                    | 273              |
| Lignite CCS project                                                    | America | Western North Dakota  | 2007/-                       | 80                                    | 500              |
| Northern Appalachian basin field test                                  | America | West Virginia         | 2003/-                       | 20,000 (planned)                      | 550              |
| Central Appalachian coal seam project                                  | America | Southwestern Virginia | -/2009                       | 907                                   | 490-670          |
| Black Warrior Basin coal seam project                                  | America | Alabama               | _/_                          | 252                                   | 460-470          |
| Pump Canyon CO <sub>2</sub> -ECBM/ sequestration demonstration         | America | New Mexico            | -/2009                       | 16,700                                | 910              |
| ARC ECBM project                                                       | Canada  | Alberta               | _/_                          | 200                                   |                  |
| CSEMP                                                                  | Canada  | Alberta               | _/_                          | 10,000                                |                  |
| RECOPOL                                                                | Poland  | Kaniow                | 2001/-                       | 760                                   | 1,050-1,090      |
| Qinshui Basin ECBM project                                             | China   | Qinshui Basin         | 2004/-                       | 192                                   | 478              |
| Yubari project                                                         | Japan   | Ishikari coal basin   | -/2004                       | 884                                   | 890              |
| APP CO <sub>2</sub> -ECBM project                                      | China   | Liulin                | -/2011                       | 460                                   | 560              |
| Huaneng deep coal seams<br>CO <sub>2</sub> -ECBM demonstration project | China   | Qinshui Basin         | 2014/-                       | 1,000 (planned)                       | >1,000           |

2.4.1.3 Lignite CCS project In 2007, the Plains CO<sub>2</sub> Reduction (PCOR) Partnership initiated a field-based test in Burke County in northwestern North Dakota to determine the fate of CO<sub>2</sub> injected into a representative lignite coal seam and to uncover the potential for ECBM production. Approximately 90 tons of CO2 were injected over roughly a 2-week period into a 10-12-foot (3-4-m)-thick coal seam at a depth of 1,100 feet (335 m).  $CO_2$  was injected through a single injection well, which was surrounded by four monitoring wells. These monitoring wells employed various technologies to track the presence and movement of  $CO_2$  in the lignite coal seam. This validation test demonstrated the overall feasibility of injecting CO<sub>2</sub> into coal seams in the field scale. It was safely executed, suggesting that similar equipment could be deployed, and comparable operations could be successfully implemented at other field sites (U.S. DOE 2013).

2.4.1.4 Northern Appalachian basin field test CON-SOL's northern Appalachian basin field test involved two coal beds, the Pittsburgh and Upper Freeport coals in a 200-acre area of Mars hall County, West Virginia. The project began in 2003 and was completed in 2010. This demonstration project planned to test horizontal drilling for carbon storage with ECBM recovery. Horizontal drilling will maximize drainage of CBM and minimize the surface footprint of the injection operation. Horizontal drilling may also limit the negative impacts of coal swelling that might limit injectivity of a single, vertical well. As much as 20,000 tons of  $CO_2$  would be injected over the two-year period, or until  $CO_2$  breaks through to the production well (Greb et al. 2010). No report about the final injection quantity was found.

2.4.1.5 Central Appalachian coal seam test The Southeast Regional Carbon Sequestration Partnership (SE-CARB) planned two coal injection tests as part of their Phase II research (Greb et al. 2010). One was conducted in the central Appalachian basin in southwestern Virginia. For the field validation test, an existing coalbed methane (CBM) well was converted for  $CO_2$  injection. The initial injection of 45 tons of  $CO_2$  was completed on January 10, 2009. In total, 1,000 tons (U.S. short tons) of  $CO_2$  were injected into the interval at an average rate of 41.6 tons per day. The maximum rate was 54.6 tons/day, but injectivity decreased to 20 tons/day.

2.4.1.6 Black Warrior Basin coal seam project The other coal injection test led by SECARB was conducted in the Black Warrior Basin in the southern Appalachians. The principal objectives of the SECARB Black Warrior coal test are (1) to determine if sequestration of carbon dioxide in mature coalbed methane reservoirs is a safe and effective

method to mitigate greenhouse gas emissions and (2) to determine if sufficient injectivity exists to drive  $CO_2$ enhanced coalbed methane recovery efficiently. This program will help develop strategies for  $CO_2$  injection into multiplecoal seams with a broad range of reservoir properties. Coal seams in the Black Creek, Mary Lee, and Pratt coal zones of the Pennsylvanian-age Pottsville Formation were selected for the injection test. A total of 252 tons of  $CO_2$  were injected to three coal seams (SECARB web 2013).

2.4.1.7 Pump Canyon  $CO_2$ -ECBM/sequestration demonstration The Pump Canyon  $CO_2$ -enhanced coalbed methane ( $CO_2$ /ECBM) sequestration demonstration project was planned to demonstrate the effectiveness of  $CO_2$ sequestration in a deep, unmineable coalbed at the Pump Canyon site in the San Juan Basin of northern New Mexico via a small-scale geologic sequestration project (which, though termed small-scale, is the largest volume of  $CO_2$ injected into a coalbed to date). A total of 167 kt of  $CO_2$ was injected in about a 12-month period (July 30, 2008 to August 12, 2009) (Grigg et al. 2012).

## 2.4.2 ECBM pilot/demonstration tests in Canada

2.4.2.1 ARC ECBM project The Alberta Research Council, Inc. (ARC) of Alberta, Canada, developed a pilot site at the Fenn Big Valley, with two main objectives: (i) to reduce greenhouse gas (GHG) emissions by subsurface injection of  $CO_2$  into deep coalbeds, and (ii) to enhance CBM recovery factors and production rates as a result of  $CO_2$  injection (Gunter 2009). The overall program was divided into five phases:

- (1) The proof of concept study-initial assessment and feasibility study of injecting carbon dioxide, nitrogen and flue gases into the low permeability bituminous Mannville coals of Alberta.
- (2) The design and implementation of a CO<sub>2</sub> micro-pilot test following Amoco Production Company procedures.
- (3) The design and implementation of flue gas  $(CO_2 + N_2)$  micro-pilot tests.
- (4) Source-sink matching, simulator improvements and economic assessment model.
- (5) Extension of micro-pilots to lower rank bituminous and higher rank anthracitic coals.

Pure CO<sub>2</sub>, pure N<sub>2</sub> and flue gas (consisting of 13 % CO<sub>2</sub> and 87 % N<sub>2</sub>) were considered to be injected in this project. Early results indicated that the flue gas injection seems to enhance methane production to a greater degree than that possible with CO<sub>2</sub> alone, because of the different roles of the two gases while sequestering CO<sub>2</sub>. As a result, a total of 200 tons of CO<sub>2</sub> were injected.

2.4.2.2 CSEMP project CSEMP stands for  $CO_2$  sequestration and enhanced coalbed methane production pilot. The project and research program were led by Suncor Energy Inc. and Alberta Research Council, respectively. The overall scientific/technical objective of the project was to extend the pilot to test coal seam response to  $CO_2$ injection, determine the  $CO_2$  storage parameters, evaluate ECBM production potential and establish storage, monitor and verify the parameters and evaluate the impact on ground water or ground water production. The CSEMP project was a multi-well pilot with one injection well and two production wells. During the pilot, two  $CO_2$  injectionfalloff cycles were conducted. A total of 10,000 tons of  $CO_2$  were injected (Deng et al. 2008).

## 2.4.3 ECBM pilot/demonstration tests in EU

2.4.3.1 RECOPOL project European Union (EU) initiated an ECBM pilot test named RECOPOL (Reduction of CO<sub>2</sub> Emissions by Means of CO<sub>2</sub> Storage in the Silesian coal basin of Poland) in Poland. The RECOPOL project, started in November 2001, was the first European field demonstration of ECBM. The main objective of the RECOPOL project is to demonstrate that CO<sub>2</sub> injection in coal is a feasible option under European conditions and CO2 storage in coal layers is a safe and permanent solution. The RECOPOL site is located in the west central Upper Silesian basin in the South of Poland near the Czech border. Liquid CO<sub>2</sub> from an industrial source was first injected in August 2004. Continuous injection started in April 2005, after reservoir stimulation. The total  $CO_2$  injection was 760 t, with 68 t  $CO_2$  produced back (van Bergen 2007). Although CO<sub>2</sub> injection ended in June 2005, the pilot is still ongoing. Currently, the focus is on monitoring and verification (Wageningen and Maas 2007).

#### 2.4.4 ECBM pilot/demonstration tests in Japan

2.4.4.1 Yubari project The Yubari project is Japan's first  $CO_2$ -ECBM field trial which had been designed to evaluate technical and economic feasibility of extracting methane gas while storing  $CO_2$  in Japanese coal seams. The project located near the town of Yubari on the island of Hokkaido in northern Japan. It was two multi-wells micro-pilot test with an injection well and a production well. The test was carried out in the period between May 2004 and October 2007. There were a variety of tests conducted in the injection well, including an initial water-injection falloff test, series of  $CO_2$  injection and falloff tests. It was believed that low injectivity of  $CO_2$  was caused by the reduction in permeability induced by swelling in the coal

matrix. So N<sub>2</sub> flooding test was performed in 2006, to evaluate the effectiveness of N<sub>2</sub> flooding on improving well injectivity. The N<sub>2</sub> flooding test showed that daily CO<sub>2</sub> injection rate was boosted, but only temporary (Fujioka et al. 2008). Throughout the project, a total of 884 tons of CO<sub>2</sub> were injected (Fujioka 2008a).

#### 2.4.5 ECBM pilot/demonstration tests in China

2.4.5.1 Qinshui Basin ECBM project A single well micro-pilot ECBM test was designed for the south Qinshui site as part of a Canada/China bilateral project. The micropilot approach for coalbed reservoir evaluation has three primary goals. The first goal is to measure the data accurately while  $CO_2$  injecting into and producing from a single well. The second goal is to evaluate the measured data to obtain estimations of reservoir properties and sorption behavior. The third goal is to use calibrated simulation models to predict the behavior of a larger scale pilot project or full field development.

The micro-pilot was designed in six stages as follows:

- (1) Inspection of wellhead equipment.
- (2) Solation of the No.3 coal seam from the No.15 coal seam and installing additional downhole and surface equipment.
- (3) Initial production testing to determine baseline reservoir properties.
- (4) Intermittent injection of CO<sub>2</sub> for up to 30 days followed by a 30-day shut-in period.
- (5) Production testing after the  $CO_2$  injection period.
- (6) The final shut-in test.

Before the injection of CO<sub>2</sub>, the well was put on production for 134 days starting on October 28, 2003 and a set of baseline data were collected. Injection of CO<sub>2</sub> started on April 6, 2004. Liquid CO<sub>2</sub> was injected at an injection pressure, which was less than the fracturing pressure of approximately 8 MPa. 192 t CO<sub>2</sub> was successfully injected into No.3 coal seam through 13 injection cycles, each cycle based on injecting one truck load of CO<sub>2</sub>. Each injection cycle was a daily cycle of injection and soak. CO<sub>2</sub> injection was completed on April 18. The well was shut-in for an extended soak period of about 40 days to allow the  $CO_2$  to come to equilibrium with the coal. The well was placed on production from June 22, 2004 for 30 days. The production rates and gas composition data were used to estimate the sorption behaviour and to calibrate a reservoir simulator to predict the behaviour of full-scale pilots and full-field development. A final shut-in test was carried out to estimate the reservoir properties and near-well conditions (Wong et al. 2007).

2.4.5.2 APP CO<sub>2</sub>-ECBM project AAP CO<sub>2</sub>-ECBM project is a collaborative project between China United Coalbed Methane Corp. (CUCBM) and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia and supported by JCOAL, Japan. The project was operated at Liulin gas block, Lvliang city, Shanxi province by CUCBM. In this project, a multi-lateral coal seam well was used for  $CO_2$ injection.  $CO_2$  injection was commenced in September 2011 and completed in March 2012. This was the first field trial in the world to inject  $CO_2$  into multi-lateral horizontal well in coal seams. Over 460 tons of  $CO_2$  was injected into a multilateral horizontal well. Using horizontal well helps to increase  $CO_2$  injectivity compared with vertical wells (Pan 2012).

2.4.5.3 Huaneng deep coal seams  $CO_2$ -ECBM demonstration project Just recently, the Ministry of Science and Technology for the People's Republic of China (MOST) plans to fund a deep coal seams  $CO_2$ -ECBM demonstration project. The project is led by Huaneng Clean Energy Research Institute, and will be started in 2014. The main purposes of the project are to demonstrate the technology of  $CO_2$  storage in deep coal seams in Qinshui Basin and to simultaneously enhance the coalbed methane recovery. 1,000 tons of  $CO_2$  is planned to be injected during this project. This will be the largest ECBM project in China.

#### 3 Technical challenges of CO<sub>2</sub>-ECBM

Despite so much progresses mentioned above, we still face great technical challenges to implement the large-scale commercial development of CO<sub>2</sub>-ECBM. Some of the technical challenges are described as follow:

3.1 Definition of unmineable coal seams for CO<sub>2</sub> storage capacity evaluation and storage site characterization

For the purpose of CO<sub>2</sub> emission reduction, CO<sub>2</sub> must be stored in coal permanently, the coal seams used for storing CO<sub>2</sub> should be unmineable forever, otherwise, coal mining, combustion, or gasification would release CO<sub>2</sub> stored in the coal. The definition of unmineable coal is crucial for capacity evaluation and storage site characterization. However, universally accepted quantitative definition of unmineable coal seams does not yet exist. Coal that is considered unmineable because of geologic, technological, and economic factors (typically too deep, too thin, or lacking the internal continuity to be economically mined with today's technologies) may have potential for CO<sub>2</sub> storage (U.S. DOE 2012). In many capacity evaluation literatures, unmineable coal seams usually refer to coal seams at maximum buried depth of 800 or 1,000 m (Bachu 2007). DOE's Big Sky Carbon Sequestration Partnership (BSCSP) and Plains CO<sub>2</sub> Reduction (PCOR) Partnership



Fig. 1 Layout of well pattern of multilateral horizontal well for ECBM operation (After Pan 2012)

define coal as unmineable if it is beneath at least 305 m of overburden. DOE's Midwest Geological Sequestration Consortium (MGSC) adds two considerations to their definition: all coals shallower than 152 m are mineable and so are unsuitable for CO<sub>2</sub> sequestration, and at 152–305 m deep, coal seams 0.5–1.1 m thick are unmineable and so are reasonable sequestration targets (U.S. DOE 2010). (Fang and Li 2013a) defined coal seams buried at the depth of 1,000–2,000 m in China as unmineable coal seams for CO<sub>2</sub> storage capacity evaluation.

Changes in technology and economics over time shift the threshold of unmineability and therefore complicate attempts to quantify this resource. We need a generally accepted definition of unmineable coal in order to develop a methodology to assess the storage potential in unmineable coal seams, and to characterize potential coal seams for  $CO_2$  storage (Corum et al. 2013).

## 3.2 Method for CO<sub>2</sub> injectivity enhancement

Successful injection of  $CO_2$  into coal seams requires sufficient permeability along pores and fractures, yet adsorption of  $CO_2$  reduces permeability due to swelling of the coal. Permeability and injectivity reduction had been encountered in several field pilot/demonstration, such as Allison Unit project, Qinshui Basin ECBM project and Yubari project. For  $CO_2$  storage in coals or ECBM recovery projects operation, effective injectivity enhancing technology should exist. Horizontal well or multilateral horizontal well as used in APP  $CO_2$ -ECBM project (as shown in Fig. 1) may be an effective way to increase  $CO_2$  injectivity compared with conventional vertical wells.

## 3.3 Other challenges

Other challenges include some common issues the same as other CGUS technologies, such as security, stability, economy, environmental risk, etc., are not detailed in this article.



Fig. 2 5-spot pattern configuration of the hydraulic fracturing wells for ECBM operation

## 4 Prospects of CO<sub>2</sub>-ECBM

Taking into account the state of the art and the technical challenges of ECBM technology, other applications of ECBM mechanisms may be feasible and significant to promote the advancement of ECBM technology at the present stage. The following ideas may be good choices for this purpose.

## 4.1 Integrating ECBM with hydraulic fracturing

Hydraulic fracturing treatment is an effective way to enhance coal permeability, thus  $CO_2$  injectivity. Therefore, if we use hydraulic fracturing wells as the injection and/or production wells, and put reasonable configuration, we may get an excellent effect on  $CO_2$  injectivity. Figure 2 shows a typical 5-spot pattern configuration of the hydraulic fracturing wells for ECBM operation.

4.2 Gas mixture instead of pure CO<sub>2</sub> for injection into coal seams (G-ECBM)

As revealed in the field pilots in Japan and Canada, comparing with pure  $CO_2$ ,  $N_2$  injection into coal seams can induce coal matrix shrinkage and results in width of micro-fracture in coal, and thus increase permeability and injectivity to some extent. So it is beneficial to inject  $CO_2$ mixed with  $N_2$  into coal. In other words, gas mixture, consisting of rich  $N_2$ , some  $CO_2$  and/or other gases, instead of pure  $CO_2$  is injected into the coal seams through injection wells to displace the methane from coals and drive it to the production wells. This process is called gas mixture enhanced coalbed methane (G-ECBM) recovery (Fang and Li 2013b). The concept of G-ECBM is shown in Fig. 3.



Fig. 3 Schematic diagram of G-ECBM technology (After Fang and Li 2013b)



Fig. 4 Typical layout for an underground ECBM system (Fang and Li 2013b)

## 4.3 Application of ECBM to underground coal mines

Different from CO<sub>2</sub>-ECBM, which aims at CO<sub>2</sub> storage as well as enhancement of CBM recovery from unminable coal, the objective of ECBM applied to underground coal mines is to enhance the CBM recovery ratio from minable coal and thereby decrease the risk of gas outburst while mining. Thus underground ECBM can significantly reduce mine downtime due to improved gassy mine conditions and safer mining environments, provide an opportunity to utilize more CBM and reduce GHG (methane) emissions (Fang and Li 2013b). A feasible underground ECBM system is typically illustrated in Fig. 4.

Application of ECBM to underground coal mines do not store or reduce any CO<sub>2</sub>, and has no contribution to GHG mitigation. However, we can investigate some the same key technical issues with CO<sub>2</sub>-ECBM, such as regulation and control technology of gas injection, factors affecting the components of a gas mixture and so on.

## 5 Conclusions

CO<sub>2</sub> storage in coal seams and enhanced coalbed methane recovery (CO<sub>2</sub>-ECBM), one of the CGUS options, has been

paid special attention in the past two decades due to its winwin effect on simultaneously storing large volumes of CO<sub>2</sub> in unmineable coal seams permanently and enhancing coalbed methane recovery ratio, which can offset some of the costs associated with CO<sub>2</sub> storage. In this article, we give an overview of research status of ECBM from capacity evaluations, laboratory investigations, modelings and pilot tests. There is no doubt that we have made great progress in CO<sub>2</sub>-ECBM research in the past two decades. However, we still face a lot of technical challenges, such as the definition of unmineable coal seams for CO2 storage capacity evaluation and site characterization, methods to enhance CO<sub>2</sub> injectivity, security, and economy and so on. Finally, we describe several possible ways to promote the development of ECBM technology in the present stage including integrating ECBM with hydraulic fracturing, using a gas mixture instead of pure CO<sub>2</sub> for injection into coal seams, application of ECBM to underground coal mines.

Acknowledgment Supported by the National Natural Science Foundation of China (51104143).

**Open Access** This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

#### References

- Bachu S (2007) Carbon dioxide storage capacity in uneconomic coal beds in Alberta, Canada: methodology, potential and site identification. Int J Greenh Gas Control 1(3):374–385
- Busch A, Krooss BM, Gensterblum Y, Van Bergen F, Pagnier HJM (2003) High-pressure adsorption of methane, carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behaviour. J Geochem Explor 78–79:671–674
- Corum MD, Jones KB, Warwick PD (2013) CO<sub>2</sub> sequestration potential of unmineable coal-state of knowledge. Energy Procedia 37(2013):5134–5140
- Day S, Fry R, Sakurovs R (2008) Swelling of Australian coals in supercritical CO<sub>2</sub>. Int J Coal Geol 74(1):41–52
- Deng XH, Mavor M, Macdonald D, Gunter WD, Wong S, Faltinson J, Li H (2008) ECBM technology development at Alberta research council. Presentation from sixth international forum on geologic sequestration of CO<sub>2</sub> in deep unmineable coalseams (Coal-Seq VI) Houston, 10 & 11 April 2008
- Durucan S, Ahsan M, Shi JQ (2008) Matrix shrinkage and swelling characteristics of European coals. In: Proceedings of 9th conference on greenhouse gas control technologies, Washington, DC, 16th–20th Nov 2008
- Fang ZM (2009) Mechanisms and experimental study of gas mixture enhanced coalbed methane recovery technology. Doctor's thesis, Institute of Rock and Soil Mechanics, The Chinese Academy of Sciences
- Fang ZM, Li XC (2012) Experimental study of gas adsorptioninduced coal swelling and its influence on permeability. Disaster Adv 5(4):769–773
- Fang ZM, Li XC (2013a) A preliminary evaluation of the carbon dioxide storage capacity in unminable coalbeds in China. Acta Geotech. doi:10.1007/s11440-013-0228-5

- Fang ZM, Li XC (2013b) A gas mixture enhanced coalbed methane recovery technology applied to underground coal mines. J Min Sci 49(1):106–117
- Fang ZM, Li XC, Huang L (2013) Laboratory measurement and modelling of coal permeability with different gases adsorption. Int J Oil Gas Coal Technol 6(5):567–580
- Finley R, Moulton S (2012) Final report, midwest geological sequestration consortium (MGSC) phase II sequestration and enhanced coal bed methane: tanquary farms test site, Wabash County, Illinois. Illinois State Geological Survey, 2012, Prepared for: The U.S. Department of Energy, National Energy Technology Laboratory, U.S. DOE Contact: DE-FC26-05NT42588
- Fitzgerald JE, Pan Z, Sudibandriyo M, Robinson RL, Gasem KAM, Reeves S (2005) Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal. Fuel 84(18):2351–2363
- Fujioka M (2008a). Field experiment of CO<sub>2</sub>-ECBMR in Ishikari basin in Japan. Presentation from sixth international forum on geologic sequestration of CO<sub>2</sub> in deep unmineable coalseams (Coal-Seq VI) Houston, 10 & 11 April 2008
- Fujioka M, Furukawa H, Nako M (2008) The outcome of CO2-ECBM Yubari pilot test. J MMIJ 124(12):890–897
- Gale J, Freund P (2001) Coal-bed methane enhancement with CO<sub>2</sub> sequestration worldwide potential. Environ Geosci 8(3):210–217
- Goodman AL, Favors RN, Larsen JW (2006) Argonne coal structure rearrangement caused by sorption of CO<sub>2</sub>. Energy Fuels 20(6): 2537–2543
- Gray I (1987a) Reservoir engineering in coal seams: part1-The physical process of gas storage and movement in coal seams. SPE Reserv Eng 2(1):28–34
- Gray I (1987b) Reservoir engineering in coal seams: part2-observations of gas movement in coal seams. SPE Reserv Eng 2(1):35–40
- Greb SF, Eble CF, Slucher ER, Carter KM, Avary KL (2010) MRCSP phase I I topical report, storing and using CO<sub>2</sub> for enhanced coalbed methane recovery in unmineable coal beds of the northern Appalachian basin and parts of the central Appalachian basin. Prepared for: The U.S. Department of Energy, National Energy Technology Laboratory, DOE Cooperative Agreement No. DE-FC26-05NT42589
- Grigg R, McPherson B, Lee R (2012) Southwest regional partnership on carbon sequestration (SWP) Phase II final scientific/technical report. Prepared for: The U.S. Department of Energy, National Energy Technology Laboratory, DOE Cooperative Agreement No. DE- FC26-05NT42591
- Gruszkiewicz MS, Naney MT, Blencoe JG, Cole DR, Pashin JC, Carroll RE (2009) Adsorption kinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama. Int J Coal Geol 77(1–2):23–33
- Gunter WD (2009) Coalbed methane, a fossil fuel resource with the potential for zero greenhouse gas emissions—the Alberta, Canada program 1996–2009: a summary
- Guo R, Mannhardt K, Kantzas A (2008) Laboratory investigation on the permeability of coal during primary and enhanced coalbed methane production. J Can Pet Technol 47(10):1–6
- Hamelinck CN, Faaij AP, Ruijg GJ, Jansen D, Pagnier HJM, van Bergen F, Wolf K.-H. A A, Barzandji OH, Bruining H, Schreurs H (2000) Potential for CO<sub>2</sub> sequestration and enhanced coalbed methane production in The Netherlands, NOVEM BV (Netherlands Agency for Energy and the Environment), The Netherlands
- Han F, Yang J, Liu Z (2008) Experimental study of transport processes of different gases in coal. In: Proceedings of the 2008 Asia Pacific CBM symposium, Brisbane, 22–24 Sept 2008
- Hendriks C, Graus W, van Bergen F (2004) Global Carbon Dioxide Storage Potential and Costs. ECOFYS/TNO report EEP-02001
- Intergovernmental Panel on Climate Change (IPCC) (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

- Kronimus A, Busch A, Alles S, Juch D, Jurisch A, Littke R (2008) A preliminary evaluation of the CO<sub>2</sub> storage potential in unminable coal seams of the Munster Cretaceous Basin, Germany. Int J Greenh Gas Control 2(3):329–341
- Krooss BM, van Bergen F, Gensterblum Y (2002) High-pressure methane and carbon dioxide adsorption on dry and moistureequilibrated Pennsylvanian coals. Int J Coal Geol 51(2):69–92
- Law DH.-S (2003) Geo-seq project: numerical model comparison study for greenhouse gas sequestration in coalbeds-an update. Presentation from second international forum on geologic sequestration of CO<sub>2</sub> in deep unmineable coalseams (Coal-Seq II) Washington DC, 6 & 7 March 2003
- Law D H.-S, van den Meer L G H (Bert), Gunter W D (Bill) (2002) Numerical simulator comparison study for enhanced coalbed methane recovery processes, part I pure carbon dioxide injection. In: The SPE gas technology symposium held in Calgary, Alberta, 30 April–2 May 2002
- Lin W, Tang G Q, Kovscek A R (2007) Sorption-induced permeability change of coal during gas-injection processes. In: SPE annual technical conference and exhibition, Anaheim, 11–14 Nov 2007
- Liu YF, Li XC, Bai B (2005) Preliminary estimation of CO<sub>2</sub> storage capacity of coalbeds in China. Chin J Rock Mech Eng 24(16):2947–2952
- Manik J (1999) Compositional modeling of enhanced coalbed methane recovery. Doctor's thesis, The Pennsylvania State University
- Mazumder S, Wolf K-HAA (2008) Differential swelling and permeability change of coal in response to CO<sub>2</sub> injection for ECBM. Int J Coal Geol 74(2):123–138
- Mazumder S, van Hemert P, Busch A, Wolf K-HAA, Tejera-Cuesta P (2006) Flue gas and pure CO<sub>2</sub> sorption properties of coal: a comparative study. Int J Coal Geol 67(4):267–279
- MGSC Web (2013) http://www.sequestration.org/mgscprojects/coal bedmethane.html. Accessed 15 Dec 2013
- Ozdemir E (2004) Chemistry of the adsorption of carbon dioxide by Argonne premium coals and a model to simulate CO<sub>2</sub> sequestration in coal seams. Doctor's thesis, University of Pittsburgh
- Ozdemir E (2009) Modeling of coal bed methane (CBM) production and  $CO_2$  sequestration in coal seams. Int J Coal Geol 77(1–2): 145–152
- Pan ZJ (2012) CO<sub>2</sub> ECBM field trial in China using a multi-lateral horizontal well. Presentation from the 6th Australia–China joint coordination group on clean coal technology & JCG low emission coal workshop, Hangzhou, 5–6 Dec 2012
- Reeves S (2004) The coal-seq project: key results from field, laboratory, and modeling studies. In: Proceedings of 7th conference on greenhouse gas control technologies (GHGT7). Elsevier, Oxford
- Reeves S, Oudinot A (2004) A technical and economic sensitivity study of enhanced coalbed methane recovery and carbon sequestration in coal. DOE topical report
- Romanov V, Soong Y (2008) Long-term CO<sub>2</sub> sorption on upper freeport coal powder and lumps. Energy Fuels 22(2):1167–1169
- Romanov V, Goodman AL, Larsen JW (2006) Errors in CO<sub>2</sub> adsorption measurements caused by coal swelling. Energy Fuels 20(1):415–416
- Sandia National Laboratories (2003) Modification of TOUGH2 for Enhanced Coal Bed Methane Simulations. SAND2003-0154
- SECARB web (2013) http://www.secarbon.org/index.php?page\_id=8. Accessed 15 Dec 2013
- Seto CJ, Jessen K, Orr Jr FM (2006) A four-component, two-phase flow model for CO<sub>2</sub> storage and enhanced coalbed methane recovery. In: SPE annual technical conference and exhibition, San Antonio, 24–27 Sept
- Shi JQ, Durucan S (2005) A model for changes in coalbed permeability during primary and enhanced methane recovery. SPE Reserv Eval Eng 8(4):291–300
- Shi JQ, Mazumder S, Wolf K-HAA (2008) Competitive methane desorption by supercritical CO<sub>2</sub> injection in coal. Transp Porous Media 75(1):35–54

- Stevens SH, Kuuskraa VA, Gale J, Beecy D (2001) CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 8(3):200–209
- Sun KM (2004) Fluid-solid coupling theory of exploiting coal methane and improving coal methane production by gas injection in low permeability reservoir and its application. Doctor's thesis, Liaoning Technical University
- Syahrial E, Lemigas (2005) Coalbed methane simulator development for improved recovery of coalbed methane and CO<sub>2</sub> sequestration. In: SPE Asia Pacific oil and gas conference and exhibition, 5–7 April, Jakarta
- Thimons ED, Kissell FN (1973) Diffusion of methane through coal. Fuel 52(4):274–280
- U.S. Department of Energy, National Energy Technology Laboratory (2010) Carbon sequestration Atlas of the United States and Canada, 3rd edn. (Atlas III). p 162
- U.S. Department of Energy, National Energy Technology Laboratory (2012) The 2012 United States carbon utilization and storage Atlas, 4th edn. (Atlas IV), p 130. http://www.netl.doe.gov/technologies/ carbon\_seq/refshelf/atlasIV/. Accessed 15 Dec 2013
- U.S. Department of Energy, National Energy Technology Laboratory (2013) Plains CO<sub>2</sub> reduction (PCOR) partnership practical environmentally sound CO<sub>2</sub> sequestration Atlas, 4th edn. revised. p 109. http://www.undeerc.org/pcor/. Accessed 15 Dec 2013
- van Bergen F (2007) CO2 storage in coal with ECBM production Lessons learned from RECOPOL test site and research issues in MOVECBM and CATO. Presentation from CATO day 2007. http://www.co2cato.org/publications/publications/co2-storage-in-coal-with-ecbmproduction-lessons-learned-from-recopol-test-site-and-researchissues-in-movecbm-and-cato.Accessed 15 Dec 2005
- van Wageningen WFC, Maas JG (2007) Reservoir simulation and interpretation of the RECOPOL ECBM pilot in Poland. In: 2007 international coalbed methane symposium, Tuscaloosam, 23–24 May 2007
- Vangkilde-Pedersen T, Anthonsen KL, Smith N, Kirk K, Neele F, van der Meer B, Gallo YL, Bossie-Codreanu D, Wojcicki A, Nindre Y-ML, Hendriks C, Dalhoff F, Christense NP (2009) Assessing European capacity for geological storage of carbon dioxide—the EU geocapacity project. Energy Procedia 1(1):2663–2670
- Viete DR, Ranjith PG (2006) The effect of CO<sub>2</sub> on the geomechanical and permeability behaviour of brown coal: implications for coal seam CO<sub>2</sub> sequestration. Int J Coal Geol 66(3):204–216
- Vincent CJ, Poulsen NE, Zeng RS, Dai SF, Li MY, Ding GS (2011) Evaluation of carbon dioxide storage potential for the Bohai Basin, north-east China. Int J Greenh Gas Control 5(3):598–603
- White CM, Smith DH, Jones KL, Goodman AL, Jikich SA, LaCount RB, DuBose SB, Ozdemir E, Morsi BI, Schroeder KT (2005) Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: a review. Energy Fuel 19(3):659–724
- Wong S, Law D, Deng XH, Robinson J, Kadatz B, Gunter WD, Ye JP, Feng SL, Fan ZQ (2007) Enhanced coalbed methane and CO2 storage in anthracitic coal—micro-pilot test at South Qinshui, Shanxi, China. Int J Greenh Gas Control 1(2):215– 222
- Xie HP, Li XC, Fang ZM, Wang YF, Li Q, Shi L, Bai B, Wei N, Hou ZM (2013) Carbon geological utilization and storage in China: current status and perspectives. Acta Geotech. doi:10.1007/ s11440-013-0277-9
- Yamazaki T, Aso K, Chinju J (2006) Japanese potential of CO2 sequestration in coal seams. Appl Energy 83(9):911–920
- Yu HG, Zhou GZ, Fan WT, Ye JP (2007) Predicted CO<sub>2</sub> enhanced coalbed methane recovery and CO<sub>2</sub> sequestration in China. Int J Coal Geol 71(1):345–357
- Zhang QL, Zhang Q, Cui YJ, Yang J (2005) Research on coal multicomponent gas adsorption characteristics. Nat Gas Ind 25(1):57–60