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Abstract A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent

stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of

diethylenediamine (DETA), and poly-amine groups of polyethylenimine (PEI) to the network gave rise to task-specific

modification of the microenvironments to make them more suitable for CO2 capture. As a result, significant boost of CO2

adsorption capacity of 4.5 mmol/g (for FC-POP–CH2DETA, 273 K, 1 bar) and the CO2/N2 selectivity of 736.1 (for FC-

POP–CH2PEI) were observed after the post-synthesis amine modifications. Furthermore, these materials can be regener-

ated in elevated temperature under vacuum without apparent loss of CO2 adsorption capacity.
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1 Introduction

The rapidly increasing concentration of atmospheric car-

bon dioxide generated from combustion of fuels (include

coal, petroleum and natural gas) has aroused environmental

concern, as a result, carbon capture and sequestration

(CCS) gradually gain their growing popularity

(D’Alessandro et al. 2010; Sumida et al. 2011; Goeppert

et al. 2012; Lu et al. 2013; Wang and Xu 2014; Romanov

et al. 2015). Chemical absorption by aqueous solutions of

ethanolamines (Brennecke and Gurkan 2010), which is

most widely used CCS technique, suffer from several fatal

defects including solvent loss, corrosion, and tremendous

energy cost for the regeneration (Service 2004). So more

efforts have been devoted to solid porous adsorbent. Var-

ious categories of novel materials with extraordinary

porosity have been discovered, including silicas (Suhendi

et al. 2013), zeolites (Wakihara et al. 2010), metal–organic

frameworks (Li et al. 2014), zeolitic imidazolate frame-

works (Cai et al. 2014) and carbon materials (Sevilla and

Fuertes 2011). With the advantages of outstanding BET

surface area and stability, tremendous porous organic

polymers (POPs) have been designed (Jiang et al. 2009;

Dawson et al. 2012; Zhao et al. 2012; Han et al. 2013; Liu

et al. 2013; Zhu et al. 2013; Thompson et al. 2014; Zhu and

Zhang 2014; Puthiaraj et al. 2015). More importantly, the

organic skeletons of POPs give rise to their easy-to-func-

tionalize nature so that enhancement of CO2/N2 selectivity

is able to be realized via the incorporation of CO2-philic

groups into networks (Thomas 2010). Typically, PPNs

(porous polymer networks) (Ben et al. 2009; Yuan et al.

2011) was synthesized with ultrahigh Brunner–Emmet–

Teller (BET) surface area, the specific surface area of

materials calculated by using adsorption theory developed

by three scientists, namely Brunner, Emmet and Teller),

some of which can be further incorporated by various

groups, such as sulfonic acid, lithium sulfonate and

ammonium sulfonate, to significantly improve the CO2

uptake (3.6–3.7 mmol/g, 295 K, 1 bar) (Lu et al.

2011, 2013). However, in spite of their impressive per-

formance, these polymers are difficult to be used for
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industrial scale-up applications because of the harsh syn-

thesis conditions.

Alternatively, a facile and efficient method has been

reported, known as ‘‘knitting’’ aromatic building blocks to

a polymeric skeleton. A large number of heterocyclic rings

were picked as monomers to afford crosslinking networks

by applying the new technique (Li et al. 2011; Woodward

et al. 2014; Zhu et al. 2014; Xu et al. 2015). However, their

modest CO2 uptakes need great improvement for the future

CO2 capture applications (Luo et al. 2012).

Herein, a single-step procedure was adopted to facilely

realize ‘‘knitting’’ strategy to afford a porous organic

polymer via Friedel–Crafts alkylation (FC-POPs). Trip-

tycene, which may allow for a high degree of internal free

volume, was chosen as monomer, in order to deliver FC-

POPs with abundant mesopores. The mesopores of FC-

POPs shows a facility for further modifications, to inves-

tigate the influence of pore structure and nitrogen-site

density on CO2 adsorption. To realize this fancy, various

groups with nitrogen-site including amine-group,

diethylenediamine (DETA) and polyethylenimine (PEI)

were grafted into the network to produce task-specific

microenvironments by modifying microporosity and

nitrogen-site density (Scheme. 1). Accordingly, the CO2

adsorption capacity and selectivity of CO2 over N2 were

significantly improved after the post-synthesis

modifications.

2 Experiments

2.1 Materials and synthesis

Solvents, reagents and chemicals were purchased from

Aldrich and TCI. All were used without any further

purification.

2.1.1 Synthesis of FC-POP

Similar to Tan’s method (Li et al. 2011), Triptycene

(0.64 g, 2.5 mmol) and formaldehyde dimethyl acetal

(1.14 g, 15.0 mmol) dissolving in 5 mL dichloroethane

was added to a 25 mL flask. Anhydrous FeCl3 (2.44 g,

15.0 mmol) was then added as a catalyst, and the mixture

was stirred at 45 �C for 5 h and then heated to 80 �C for

another 19 h. After cooling to room temperature, the

mixture was filtered, washed by methanol for 3 times. The

solid was collected, and extracted with methanol by

Soxhlet apparatus for 24 h, brown solid was obtained after

drying (yield *95%).

2.1.2 Synthesis of FC-POP–CH2Cl

A mixture of 0.30 g FC-POP, 1.50 g paraformaldehyde,

9.0 mL acetic acid, 4.5 mL phosphoric acid and 30.0 mL

concentrated hydrochloric acid were charged in a flask, by

Scheme 1 Synthesis of FC-POP and its derivatives. The reaction conditions in each step; a formaldehyde dimethyl acetal, FeCl3,

dichloroethane, 45 �C, 5 h; 80 �C, 19 h; b paraformaldehyde, H3PO4, AcOH, HCl, 90 �C, 72 h; c i potassium phthalimide, DMF, 100 �C, 8 h; ii

hydrazine monohydrate, EtOH, reflux, 20 h; d DETA, 90 �C, 72 h; e PEI, 90 �C, 72 h
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following a well-known method (Lu et al. 2012). The flask

was sealed, then the mixture was heated to 90 �C and

maintained for 3 days. After cooling to room temperature,

the solid was collected and washed with water and

methanol for three times, then dried to afford FC-POP–

CH2Cl.

2.1.3 Synthesis of FC-POP–CH2NH2

A mixture of FC-POP–CH2Cl (0.20 g), potassium phthal-

imide (1.19 g) and 20.0 mL N,N-dimethylformamide

(DMF) was stirred at 100 �C for 8 h under an argon

atmosphere, similar to a well-known method (Ilhan et al.

1999). The cooled mixture was filtered and cursorily

washed by DMF. The resulting phthalimide derivative was

mixed with 1 mL of hydrazine monohydrate in 12 mL

ethanol. The reaction was refluxed for 20 h. The reaction

mixture was filtered and washed subsequently by DMF,

water and MeOH, then dried to afford FC-POP–CH2NH2.

2.1.4 Synthesis of FC-POP–CH2DETA

A mixture of 0.10 g FC-POP–CH2Cl and 10.0 mL

diethylenetriamine (DETA) was charged in a flask,

according to a well-known method (Lu et al. 2012). The

flask was sealed then heated to 90 �C and maintained for

3 days. After cooling to room temperature, the solid was

collected and washed with water and methanol for several

times, then dried to afford FC-POP–CH2DETA.

2.1.5 Synthesis of FC-POP–CH2PEI

In a fashion similar to the synthesis of FC-POP–CH2DETA,

0.10 g FC-POP–CH2Cl and 10.0 g polyethylene imine (PEI,

mw = 600) was reacted to afford FC-POP–CH2PEI.

2.2 Characteristics

Thermogravimetry analysis (TGA) were performed under

N2 on a NETZSCH STA449F3, with a heating rate of 10 �C
/min. 13C NMR measurements were performed on a 9.4 T

Bruker Avance spectrometer at a Larmor frequency of

100.6 MHz. Measurements were made with a 4 mm MAS

probe spinning at 15 kHz. Chemical shifts were externally

referenced to TMS (d = 0 ppm) using the methyl resonance

of hexamethylbenzene (17.5 ppm relative to TMS). Nitro-

gen adsorption isotherms were measured at 77 K using

Micromeritics ASAP 2020 static volumetric analyzer.

Before adsorption measurements the polymer was degassed

at 110 �C under vacuum. The BET surface area was cal-

culated within the relative pressure range 0.05–0.30. Total

volume was calculated at p/p0 = 0.98 and micropore vol-

ume was calculated by t-plot method. FTIR data were

obtained using a Nicolet Magna-IR 550 spectrometer. Ele-

mental analysis was determined using a Vario EL III Ele-

mental Analyzer (Elementar, Germany).

2.3 Gas adsorption experiments

2.3.1 Gas adsorption and desorption isotherms

Both of gas adsorption and desorption isotherms of POPs

were measured using a Micromeritics ASAP 2020 static

volumetric analyzer at the setting temperature. Prior to

each adsorption experiment, the samples were degassed for

12 h at 110 �C ensuring that the residual pressure fell

below 0.2 Pa and then cooled down to the target temper-

atures, followed by introduction of a single component gas

(CO2 or N2) into the system. Once the adsorption process

finished, the desorption experiment was automatically ini-

tiated. In the desorption stage, gas pressure gradually

decreased and the corresponding amount of residue

adsorbed gas was measured and calculated by the

instrument.

2.3.2 Fits of isotherms

For FC-POP and FC-POP–CH2Cl, single-site Langmuir fit

is appropriate. Their isotherms can be described by the

Eq. (1).

q ¼ qsat
bp

1þ bp
ð1Þ

where, b is a parameter in the pure component Langmuir

isotherm (Pa-1), p represents gas pressure (Pa), q is molar

loading of gas components (mol/kg) and qsat is saturation

capacity of gas components (mol/kg).

For FC-POP–CH2NH2, FC-POP–CH2DETA and FC-

POP–CH2PEI, both physical and chemical interaction

should be taken into account so that dual-site Langmuir

(Eq. 2) fitting is fine.

q ¼ qsat;1
b1p

1þ b1p
þ qsat;2

b2p

1þ b2p
ð2Þ

where two distinct adsorption sites are assumed to be

existed, so there are four parameters in the equation,

namely qsat,1, b1, qsat,2 and b2.

2.3.3 Adsorption enthalpy

For CO2 adsorption, fits of isotherms were used to calculate

adsorption enthalpy by employing Clausius–Clapeyron

equation (Eq. 3).

ln
p1

p2

� �
¼ DH

1

T1

� 1

T2

� �
ð3Þ
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where pi is the pressure for isotherm i, Ti is the temperature

for isotherm i, R is 8.315 J/(K mol).

2.3.4 IAST calculation

Pure-component isotherm fitting parameters were used for

calculating ideal adsorbed solution theory (IAST) binary-

gas adsorption selectivity (Myers and Prausnitz 1965),

defined as the Eq. (4):

S ¼ q1=q2
p1=p2

ð4Þ

where pi represents partial pressure of gas i and qi is the

corresponding pure-component gas uptake amount at pi.

The IAST calculations were carried out for flue gas model

(binary mixture containing 15% CO2 and 85% N2).

3 Results and discussions

3.1 General characteristics

FC-POP was synthesized in good yield via a simple Frie-

del–Crafts reaction. Triptycene was selected to be the

monomer because of its rigid molecular structure, which

would lead to a microporous skeleton with the extraordi-

nary porosity and high stability. The resulting FC-POP was

found to be insoluble in common organic solvents, such as

water, methanol, dichloromethane, tetrahydrofuran, ace-

tone and hexane. The chemical structure of FC-POP was

confirmed by 13C cross-polarization magic-angle spinning

(CP/MAS) NMR (Fig. 1). In the NMR spectrum, the res-

onance peaks at 139 and 130 ppm correspond to the sub-

stituted aromatic carbons of triptycene, while the resonance

peak at 120 correspond to their non-substitute counterparts.

Resonance peaks at 46–50 belong to the bridgehead car-

bons of triptycene. The peaks around 32 ppm ascribes to

the carbons of methylene linkers. Besides, high thermo-

stability of FC-POP was proved by thermogravimetric

analysis (TGA) that little apparent weight loss below

350 �C (Fig. 2a).

In order to modify the microenvironment, FC-POP was

covalently incorporated by various moieties to obtain a

series of amine-functionalized FC-POPs (Scheme 1). FC-

POP–CH2Cl, which containing vivacious chloromethyl

groups, was first been prepared as an intermediate and

chloromethyl groups were then substituted by various

amines to afford FC-POP–CH2NH2, FC-POP–CH2DETA

and FC-POP–CH2PEI. The peaks at 75–93 ppm in the

solid-state NMR spectrum of FC-POP–CH2Cl suggested

the graft of chloromethyl to the polymeric skeleton

(Fig. 1). The appearance of peaks around 200 ppm for the

spectrum of FC-POP–CH2Cl ascribed to the carbonyl

group of residual acetic acid and paraformaldehyde that

involved in the synthesis. Successful incorporation of

functional amine groups were confirmed by Fourier

Transform infrared spectroscopy (FTIR) that prosperous

graft of amine groups can be proved by enhancement of the

band around 1650 cm-1 (Fig. 2b). The amine-modified

POPs also exhibit quite good thermal stability according to

the thermogravimetric analysis results (Fig. 2a).

To quantitatively describe the density of functional

groups, element analysis was conducted for the poly-

mers. The calculated density of nitrogen element (mmol/g)

shows a significant growth of nitrogen density in sequence

of FC-POP–CH2NH2 (3.46 mmol/g), FC-POP–CH2DETA

(8.43 mmol/g) and FC-POP–CH2PEI (11.47 mmol/g)

(Table 1). Therefore, the tailor-made functional group

would make the nitrogen-site density controllable in the

microenvironment of these POPs.

Porosity of these materials was measured by nitrogen

adsorption at 77 K (Fig. 3a) and the surface areas were

calculated by the BET model. FC-POP exhibits extraordi-

nary porosity, with the BET surface area as high as

1540 m2/g. The adsorption/desorption isotherms for FC-

POP is not closed, mainly because of a swelling of polymer

matrix at 77 K (Zhang et al. 2012). After the incorporation

of functional groups, the BET surface area dropped cor-

respondingly. The SBET data drops to 939 m2/g for FC-

POP–CH2NH2, 636 m2/g for FC-POP–CH2DETA and only

129 m2/g for FC-POP–CH2PEI. For the adsorption iso-

therms of these FC-POPs, swift climb at low pressure (p/

p0\ 0.001) is contributed by micropores of these FC-

POPs, while hysteresis at higher pressure proves the

Fig. 1 Solid State 13C cross-polarization magic-angle spinning (CP/

MAS) NMR of FC-POP and FC-POP–CH2Cl
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existence of mesopores. Pore size distribution caculated by

non-local density functional theory (NLDFT) method also

confirmed the presence of both micropores and mesopores

(Fig. 3b). The mesopores, facilitating the mass transfer

during the gas uptake process, can act as the transport

channels (Liao et al. 2014). On the other hand, micropores,

enhancing the interaction between the wall and CO2

molecules, can act as the adsorption active points

(Islamoglu et al. 2013). As a result, both of them are crucial

to CO2 adsorption applications. For FC-POP, Vmicro/Vtotal

value (the ratio of micropore volume to the total pore

volume) is as low as 0.0842, demonstrating the existance of

impressive mesopores. After grafting amines into the net-

work, the microenvironment of pore structure has altered.

For example, Vmicro value of FC-POP–CH2NH2

(0.251 cm3/g) doubles that of FC-POP (0.113 cm3/g), and

its Vmicro/Vtotal value upsurges to 0.311. Accordingly, the

Fig. 2 Thermogravimetric analysis (TGA) (a) and Fourier Transform
infrared spectroscopy (FTIR) (b) of FC-POP, FC-POP–CH2Cl, FC-

POP–CH2NH2, FC-POP–CH2DETA and FC-POP–CH2PEI

Table 1 Elemental analysis and calculated N-site density for FC-POP, FC-POP–CH2Cl, FC-POP–CH2NH2, FC-POP–CH2DETA and FC-POP–

CH2PEI

POPs N (%) C (%) H (%) N-site density (mmol N/g)

FC-POP *0 77.78 4.89 *0

FC-POP–CH2Cl *0 71.60 5.34 *0

FC-POP–CH2NH2 4.10 73.93 6.56 3.46

FC-POP–CH2DETA 10.79 73.21 7.47 8.43

FC-POP–CH2PEI 14.53 67.90 8.04 11.47

Fig. 3 a Nitrogen adsorption isotherms at 77 K, solid symbols for

adsorption curves and hollow symbols for desorption ones; b pore size

distribution calculated by NLDFT method
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incorporation of functional groups may spatially separate

mesopores into several micropores, result in the modified

microenvironment of these FC-POPs through the

redistribution of pore volumes, making the resulting POPs

more suitable for CO2 capture applications.

3.2 CO2 adsorption performance

Excellent porosity and affluent nitrogen density are bene-

ficial to boost CO2 adsorption capacity for these amine-

modified POPs. Indeed, significant growth of CO2 uptake

was observed after amine-grafting (Fig. 4). For FC-POP–

CH2NH2 and FC-POP–CH2DETA, under the pressure of

1 bar, CO2 adsorption capacity reaches 4.2/2.5 and 4.5/

3.4 mmol/g at 273/298 K, much higher than that of pristine

FC-POP (3.1/1.8 mmol/g at 273/298 K). Notably, FC-

POP–CH2PEI also exhibits impressive CO2 storage ability

(3.2/2.6 mmol/g at 273/298 K) in spite of its poor BET

surface area. There are two dominant contributions for CO2

adsorption capacity, the chemical adsorption contributed

by amine groups (denoted as the nitrogen-site density) and

the physical adsorption contributed by porosity (denoted as

the BET surface area). For these FC-POPs with diverse

incorporated amines, the hysteresis loops between their

adsorption/desorption isotherms could be clear evidences

of chemical interactions between amine groups and CO2

molecules. However, in our work, the growth of the

nitrogen site density can significantly increase the CO2

adsorption enthalpy but decrease the BET surface area

(Table 2). FC-POP–CH2DETA exhibited the excellent

CO2 adsorption enthalpy (54.0 kJ/mol) yet maintained

considerable BET surface area (636 m2/g). That means,

FC-POP–CH2DETA reached a compromise between these

two factors, hence its high CO2 adsorption capacity.

To further understand the influence of various functional

groups on adsorption behavior, CO2 adsorption enthalpies

were calculated by the dual-site Langmuir fitting of CO2

adsorption isotherms at 273 and 298 K based on Clausius–

Claperyron equation. Figure 5a illustrates a plot of the CO2

adsorption enthalpies as a function of loading. It is obvious

Fig. 4 CO2 adsorption isotherms measured at 273 K (a) and 298 K

(b), solid symbols for adsorption curves and hollow symbols for

desorption ones

Table 2 Characteristics of POPs in this work

POPs N-site densitya

(mmol N/g)

SBET
(m2/g)

Vtotal

(cm3/g)b
CO2 uptake

c (mmol/g)

(273 K/298 K)

Qst
d

(kJ/mol)

Selectivitye

(298 K)

FC-POP *0 1540 1.330 3.1/1.8 26.4 12.62

FC-POP–CHCl2 *0 1058 0.801 3.4/2.1 27.9 19.32

FC-POP–CH2NH2 3.46 939 0.808 4.2/2.5 37.9 31.58

FC-POP–CH2DETA 8.43 636 0.636 4.5/3.4 54.0 167.8

FC-POP–CH2PEI 11.47 129 0.243 3.2/2.6 59.6 736.1

a Values were calculated from elemental analysis
b Total volumes calculated at p/p0 = 0.98
c Measured at the pressure of 1 bar
d Calculated CO2 enthalpy of adsorption by applying Clausius–Claperyon equation
e IAST selectivity (1 bar) for CO2/N2 calculated from pure component fits under flue gas model (CO2/N2 = 15:85)
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that FC-POP–CH2NH2, FC-POP–CH2DETA and For FC-

POP–CH2PEI exhibit dramatically high CO2 adsorption

enthalpy values as 37.9, 54.0 and 59.6 kJ/mol at low

loadings, respectively; much higher than that of FC-POP

(26.4 kJ/mol). The high adsorption enthalpy values ascribe

to strong interactions between amine-functional groups in

FC-POPs and CO2 molecules, for the presence of amines

gives rise to chemical adsorption towards CO2. It is worth

mentioned that the adsorption enthalpy value of FC-POP–

CH2DETA remains a high value even when the CO2

loading reaches 1.5 mmol/g, suggesting its abundant

chemical adsorption sites, hence the extraordinary CO2

adsorption capacity. The adsorption enthalpy values of

amine-functionalized POPs show a similar sequence of

nitrogen content, so that the nitrogen-site density are the

dominant contribution for the strong affinity to CO2 in the

microenvironment of these FC-POPs.

The excellent CO2 uptake performance and outstanding

adsorptive affinity of these FC-POPs ensure their adsorp-

tion selectivity. The ideal adsorption solution theory

(IAST) proposed by Myers and Prausnitz (1965) was used

to calculate the adsorption selectivity of CO2/N2 for these

materials. Fits of pure component isotherms were plotted to

determine the molar uptakes at specified partial pressures

in the bulk gas mixture and the selectivity was calculated

under the simulated flue gas model (CO2/N2 = 15/85). The

results suggested that the presence of incorporated amines

in FC-POPs prompts the CO2/N2 selectivity (Fig. 5b). The

selectivity value of FC-POP–CH2NH2 (31.58) is about 2.5

times higher than that of FC-POP (12.62) at 298 K. Sig-

nificantly, the CO2/N2 selectivity value of FC-POP–CH2-

DETA and FC-POP–CH2PEI soar to 167.8 and 736.1

(298 K), respectively, thanks to their advantageous

microenvironment including the microporosity and out-

standing nitrogen-site density within the pores. For FC-

POP–CH2PEI, although CO2 uptake seems modest com-

paring to the reported values [MCTP-1 (Puthiaraj et al.

2015), 2.7 mmol/g, 298 K, BILP-4 (Rabbani and El-Kaderi

2012), 3.59 mmol/g, 298 K; FCTF-1-600 (Zhao et al.

2013), 3.41 mmol/g, 273 K], the selectivity value is com-

parable to many other excellent reported POPs [azo-COP-2

(Patel et al. 2013), 130.6, 298 K; Py-1 (Luo et al. 2012),

117, 273 K; PPN-6-CH2DETA (Lu et al. 2012), 442,

295 K] (Table 3). The excellent selectivity of FC-POP–

CH2PEI ascribe to the strong adsorption enthalpy towards

CO2 (59.6 kJ/mol). Furthermore, the introduction of PEI

moieties can effectively enhance the selectivity, because

flexible PEI can block the pores of POPs to interfere the N2

adsorption while CO2 can infiltrate into the void of PEI

chains and even swell the pores due to its high polariz-

ability and quadrupole moment (Sung and Suh 2014).

Although recently reported PEI (40 wt%) , PAF-5 (Sung

and Suh 2014) exhibited even higher selectivity (1200,

298 K) than FC-POP–CH2PEI, the latter still stands out in

regards to the physicochemical stability arising from

covalent bonding amine to the network. Overall, the

selectivity value relies on pore structure and CO2 adsorp-

tion enthalpies of polymers, so the adjustment of task-

Fig. 5 a CO2 adsorption enthalpy for POPs; b The selectivity of

POPs for CO2 over N2 isotherms obtained from IAST calculations;

c Cyclic CO2 adsorption for POPs on an ASAP 2020
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specific microenvironment would be an effective approach

to improve CO2/N2 selectivity.

To test the regeneration of the FC-POPs, cycling

experiments were conducted on an ASAP 2020 analyzer

(Fig. 5c). For each cycle, the adsorbents were saturated

with CO2 up to 1 bar at 298 K followed by a high vacuum

(0.2 Pa) at 80 �C for 90 min. The CO2 adsorption capacity

in each cycle almost reached the same point, with no

apparent loss of uptake amount in the cycling test.

4 Conclusions

A highly porous FC-POP, which was facilely synthesized

via Freidel–Crafts reaction, was incorporated by various

amines to afford FC-POP–CH2NH2, FC-POP–CH2DETA

and FC-POP–CH2PEI. Both microporosity and excellent

amine-affinity towards CO2 ensured those amine-func-

tionalized polymers extraordinary CO2 selective adsorption

performance. The CO2 adsorption capacity reached as high

as 4.5 mmol/g at 273 K and 3.4 mmol/g at 298 K (1 bar)

for FC-POP–CH2DETA; and the CO2/N2 selectivity soared

to 736.1 at 298 K (1 bar) for FC-POP–CH2PEI. The reason

is, that the incorporation of task-specific functional groups

would work as a dual regulations for the microenviroment

of POPs. The dual regulations, namely the modifications of

pore structure as well as the basic amine density, improved

microporosity and adsorption enthalpy of CO2 apparently

and further enhanced the CO2 capture performance.
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Table 3 Summary of surface area, CO2 uptake, selectivity and adsorption enthalpy (Qst) in selected POPs (with excellent reported results)

POPs SBET (m2/g) T (K) CO2 uptake (mmol/g) IAST selectivity Qst (kJ/mol) Ref.

FC-POP–CH2NH2 939 298 2.5 31.6 37.9 This work

273 4.2 40.9

FC-POP–CH2DETA 636 298 3.4 167.8 54.0 This work

273 4.5 194.3

FC-POP–CH2PEI 129 298 2.6 736.1 64.0 This work

273 3.2 720.8

TB-MOP 913 298 2.6 25 30.2 (Zhu et al. 2014)

273 4.1 46

FCTF-1-600 1535 298 3.41 19 30 (Zhao et al. 2013)

273 5.53

CMP-1-(OH)2 1043 298 1.07 27.6 (Dawson et al. 2011)

273 1.80

BILP-4 1135 298 3.59 32a 28.7 (Rabbani and El-Kaderi 2012)

273 5.34 79a

PECONF-3 851 298 2.47 22 26 (Mohanty et al. 2011)

273 3.49 60

azo-COP-2 729 298 1.53 130.6 24.8 (Patel et al. 2013)

273 2.56 109.6

CPOP 2220 273 4.82 25b 27 (Chen et al. 2012)

Py-1 437 273 2.7 117a 36 (Luo et al. 2012)

ALP-1 1235 273 5.37 40 29.2 (Arab et al. 2014)

298 3.25 28

HBC-POP-1 688 298 1.2 (Thompson et al. 2014)

273 2.1

PPN-6-SO3H 1254 295 3.6 150 30.4 (Lu et al. 2011)

PPN-6-SO3Li 1186 295 3.7 414 35.7 (Lu et al. 2011)

PPN-6-CH2DETA 555 295 4.3 442 56 (Lu et al. 2012)

PEI(40 wt%) , PAF-5 40.3 298 2.5 1200c 68.7 (Sung and Suh 2014)

MCTP-1 1452 298 2.7 15.4a 40.0 (Puthiaraj et al. 2015)

273 4.6
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