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Abstract For the thorough research on coal metamorphism impact on gas adsorption capacity, this paper collected and

summarized parameters of experimental adsorption isotherms, coal maceral, proximate analysis and ultimate analysis

obtained from National Engineering Research Center of Coal Gas Control and related literatures at home and abroad,

systematically discussed the coal rank effect on its physicochemical properties and methane adsorption capacity, in which

the coal rank was shown in Vitrinite reflectance, furthermore, obtained the Semi-quantitative relationship between

physicochemical properties of coal and methane adsorption capacity.
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1 Introduction

Biological-sedimentary impact on various plants or plants

in different positions under a certain geological history

causes the differences of coal quality (expressed in ultimate

content), coal petrology (expressed in maceral composi-

tion) and ash contents (obtained from proximate compo-

sition analysis). During the metamorphic evolution, the

physicochemical properties of coal experienced a sub-

stantial change, resulting into the division of coal into

subbituminous coal (Ro;max\0:5%), low volatile bitumi-

nous coal (0:5%\Ro;max\0:9%), mid-volatile bituminous

coal (0:9%\Ro;max\1:6%), High bituminous coal

(1:6%\Ro;max\2:5%) and anthracite (Ro;max [ 2:5%).

Physicochemical properties (mainly expressed in proxi-

mate composition, maceral composition and ultimate con-

tent) variation in coal leads to the adsorption characteristics

difference of methane in coal, and many scholars did a lot

of research on the influence factors of coal rank and

physicochemical properties of coal on gas adsorption, in

which the coal rank that can also influence the physico-

chemical properties is the main controlling factors.

Adsorption of methane in coal is an important research

subject in coal mine safety and CBM exploration. Through

adsorption isotherm of methane in coal, the critical des-

orption pressure in coal reservoir can be determined, the

coalbed gas reserves can be estimated and the saturation of

the CBM can be determined, finally, the extraction rate of

coalbed methane can be predicted; The research for

adsorption capacity of methane in coal can provide theo-

retical basis for industrial of CO2-methane displacement;

and it is important for the prediction of gas emission

quantity and the coal and gas outbursts for studying

methane adsorption in coal. In other words, Sorption of gas
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in coal is an ongoing and extremely important area of

research to enhance coalbed methane from coal seams.

Scholars at home and abroad have already done a lot of

research work in the coal rank impact on physicochemical

properties of coal and coal methane adsorption character-

istics (Joubert et al. 1973, 1974; Faiz et al. 1992; Levy

et al. 1997; Ceglarska-Stefańska and Brzóska 1998;

Laxminarayana and Crosdale 1999; Zhang and Yang 1999;

Clarkson and Bustin 2000; Özgen Karacan and Okandan

2000; Fu et al. 2005; Chalmers and Marc Bustin 2007; Faiz

et al. 2007a, b; Crosdale et al. 2008; Day et al. 2008; Mares

and Moore 2008; Pan et al. 2010; Chen et al. 2011; Pini

et al. 2011; Yao et al. 2011; Xiao and Wang 2011; Hao

et al. 2012; An et al. 2013). Resulting shows that coal

methane adsorption characteristics is affected by many

kinds of factors, including coal rank, coal type that can be

expressed in terms of many physicochemical properties, e.

g. proximate analysis, maceral composition, ultimate

analysis, moisture content. In the research of coal rank

effect on methane adsorption, most scholars believe that

with the increase of coal rank, the adsorption capacity of

coal increases monotonously, while Laxminarayana

(Laxminarayana and Crosdale 1999, 2002) found a ‘U’

relation presents between coal rank and adsorption capac-

ity. Formerly studies on effect of moisture existence on

adsorption capacity have got the following achievements:

Kim et al. (2011) studied the adsorption behaviors of CH4

on dry and wet coal and got the conclusion that the sorption

capacity of CH4 on anthracite coal was higher than those

on bituminous coals at a similar condition, also, they

thought that the mutual solubility between the CH4-rich

phase and aqueous phase as well as coal swelling should be

considered in evaluating the sorption capacity of a wet coal

seam. Cai et al. (2013a, b) investigated four coals from

Northeast China and found that the data of petrographic,

proximate and ultimate analyses, moisture content, ash

yield had great effects on CH4 adsorption capacity of coals.

Previous studies of coal maceral effect on adsorption

capacity showed that vitrinite have the higher adsorption

capacity than inertinite, while some researchers hold the

opposite view. Maria Mastalerz (2004) and Cai et al.

(2013a, b) analyzed eight coals with similar coal rank but

varying petrographic for CH4 sorption capacity using a

high-pressure adsorption isotherm technique and deter-

mined the coal quality and petrographic composition of the

coals to study their relationships to the volume of CH4 that

could be sorbed into the coal. Previous studies have con-

cluded the qualitative and partly quantitative relationship

between physicochemical properties of coal and their

adsorption capacity without giving variation scope of

adsorption parameters (Unsworth et al. 1989; Yalçin and

Durucan 1991; Reich et al. 1992; Clarkson and Bustin

1999; Mastalerz et al. 2009; Charrière et al. 2010; Yao and

Liu 2012).

Different from the former research of using Limited

quantity of coal samples, focusing on a certain coal mine,

or a certain influential factor, data obtained from the

National Engineering Research Center of Coal Gas Control

(NERC) and the related literatures at home and abroad are

collected to discuss the effect of physicochemical proper-

ties of coal on methane adsorption capacity by observing

the changing rule of physicochemical properties of coal

and methane adsorption capacity with coal rank separately.

Whereas, physicochemical data are scattered as the

macromolecular structure and difference of environmental

and metamorphic factors for the formation of a certain coal

are complexity. Besides, because of the different research

aims in different literatures, not all the data can meet

requirements of this paper, then, we did some data trans-

mission work to obtain a Semi-quantitative result and to

strengthen the understanding of the factors influencing the

adsorption capacity.

2 Methods

For the thorough research on coal metamorphism impact

on gas adsorption capacity, this paper collected and sum-

marized parameters of experimental adsorption isotherms,

coal maceral, proximate composition and ultimate contents

obtained from the National Engineering Research Center of

Coal Gas Control (NERC) and related literatures at home

and abroad, systematically discussed the coal rank impact

on its physicochemical properties and methane adsorption

capacity, in which the coal rank was shown in maximum

Vitrinite reflectance Ro;max. In this paper, the changing

rules of physicochemical properties of coal and methane

adsorption capacity with coal rank were observed sepa-

rately and then the relationships between physicochemical

properties of coal and adsorption capacity were obtained.

Proximate analysis of coal (Mahajan and Walker 1971;

Bhattacharyya 1972; Reucroft and Patel 1986; Friesen and

Mikula 1988; Banerjee 1988, Barker-Read and Radchenko

1989; Yalçin and Durucan 1991; DeGance et al. 1993;

Chaback et al. 1996; Clarkson et al. 1997; Bustin and

Clarkson 1998; Özgen Karacan and Okandan 2000;

Laxminarayana and Crosdale 2002; Wang and Takarada

2003; Bae and Bhatia 2006; Qin et al. 2007; Saghafi et al.

2007; Dutta et al. 2008; Yu et al. 2008a, b, c; Pini et al.

2009; Pone et al. 2009; Battistutta et al. 2010; Gensterblum

et al. 2010; He et al. 2010; Pan et al. 2010; Kim et al. 2011;

Zheng 2012; Wang 2012; Jiang et al. 2012; Kutchko et al.

2013; An et al. 2013; Hao et al. 2013; Xiao et al. 2016)

consists of moisture, ash, volatile, fixed carbon. The
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widely-used index are: air dried basis (ad), dry basis (d),

dry ash-free basis (daf). To avoid the effects of inorganic

material of moisture and ash, we applied the index of dry

ash-free basis volatile (Vdaf). Similarly, to avoid the effects

of moisture, we applied the index of dry basis ash (daf).

The Moisture and Fixed carbon use the air dried basis

index, as the index employed by different articles that are

different with this paper, we adopted the Eqs. (1)–(5) for

transformation:

Vdaf ¼ 100Vad

100�Mad � Aad

ð1Þ

Vdaf ¼ 100Vd

100� Aad

ð2Þ

Ad ¼ 100Aad

100�Mad

ð3Þ

Fcad ¼ 100�Mad � Aad � Vad ð4Þ
Fcadf ¼ 100� Vdaf : ð5Þ

The maceral (Ceglarska-Stefańska and Brzóska 1998;

Crosdale et al. 1998; Laxminarayana and Crosdale 2002;

Busch et al. 2003; Mastalerz et al. 2004; Chang et al. 2006;

Busch et al. 2006; Qin et al. 2007; Majewska and Ziętek

2007; Siemons et al. 2007; Chang et al. 2008; Day et al.

2008; Mazumder and Wolf 2008; Pone et al. 2009;

Majewska et al. 2009; Radliński et al. 2009; Battistutta

et al. 2010; Gensterblum et al. 2010; He, et al. 2010; Day

et al. 2011; Kim et al. 2011; Jiang et al. 2012; Maphala and

Wagner 2012; An et al. 2013; Cai et al. 2013a, b; Lin et al.

2013; Dutka et al. 2013; Xiao et al. 2016) include Vitrinite,

Inertinite, Exinite. The common indicators are: moist

mineral matter basis, and moist mineral matter-free basis

(mmf). As the indexes employed by literatures at home and

abroad are not consistent, we adopted the mmf index in this

paper and used the Eq. (6) for transformation:

Xdaf ¼ 100Xmineral

100�Mineral
; X ¼ Vitrinite; Inertinite;Exinite:

ð6Þ
Ultimate analysis specifies the elements of carbon,

hydrogen, nitrogen, oxygen and sulphur (Gan et al. 1972;

Joubert et al. 1973; Nandi and Walker 1975; Nelson et al.

1980; Reucroft and Yang and Saunders 1985; Reucroft and

Patel 1986; Banerjee 1988; Friesen and Mikula 1988;

Giuliani et al. 1991; DeGance et al. 1993; Chaback et al.

1996; Wang and Takarada 2003; Fitzgerald et al. 2005;

Chang et al. 2006; Qin et al. 2007; Siemons et al. 2007;

Chang et al. 2008; Majewska et al. 2009; Radliński et al.

2009; Pone et al. 2009; Battistutta et al. 2010; Gensterblum

et al. 2010; Kim et al. 2011; Hao et al. 2012, 2013; Lin

et al. 2013). Widely-used indexes for ultimate analysis are:

dry ash-free basis, air dried basis. To avoid moisture effect,

we applied dry ash-free basis index in this paper. As the

index employed by different articles that are different with

this paper, we adopted the Eq. (7) for transformation:

Xdaf ¼ 100Xad

100� Aad �Mad

; X ¼ C;H ;O;N ; S: ð7Þ

3 Coal rank effect on adsorption capacity

The following Langmuir adsorption isotherm pattern is

used:

Q ¼ abP

1þ bP
ð8Þ

where, Q is the adsorption capacity under an equilibrium of

P, m3/t, a is limit monolayer adsorption capacity, m3/t, b is

pressure constant, MP−1.

3.1 Coal rank effect on adsorption constant adaf

To avoid the effects of moisture, ash on methane adsorp-

tion capacity, we adopted the dry ash-free basis index to

analyze the limit monolayer adsorption capacity a,
expressed in adaf . As the index employed by different

articles that are different with this paper, we adopted the

Eq. (9) for transformation:

adaf ¼ 100aad
100�Mad � Aad

: ð9Þ

The statistical analysis of the relationship between limit

monolayer adsorption capacity (adaf) and vitrinite reflec-

tance Ro;max was shown in Fig. 1.

Adsorption isotherm results (Fig. 1) indicate that

Langmuir volumes adaf follows a upwards, discrete, sec-

ond-order polynomial trends with increasing coal rank,

which is consistent with the conclusion of Levy et al. 1997.

Figure 1 shows that the range of adaf for Lignite/subbitu-
minous is 13–34 m3/t, for low volatile bituminous is 8–

48 m3/t, for middle volatile bituminous is 4–52 m3/t, for

high volatile bituminous is 6–60 m3/t and for semi-an-

thracite/anthracite is 16–50 m3/t. Besides, upper and lower

limits exists in the relationship between adaf and Ro;max, the

upper and lower curves are separately represented in the

equations of adaf;max ¼ 13:4Ro;max � 25:01Ro;max þ 57:72

and adaf;min ¼ 1:014R2
o;max � 0:014Ro;max þ 7:18, the cor-

responding average curve is: adaf;avr ¼ 9:3135R2
o;max

�22:2865Ro;max þ 32:673, from the corresponding average

curve, we can see that the adaf decrease as the coal rank

increase in the range of Ro;max ¼ 0:4%� 1:196%, while in

the range of Ro;max ¼ 1:196%� 7%, the adaf increase as the
coal rank increase. The reason is that the porosity of the

Effects of coal rank on physicochemical properties of coal and on methane adsorption 131

123



low rank coal is larger, resulting in the stronger adsorption

capacity. With the increase of buried depth, adsorption

capacity decrease with the compaction of larger pores

because of the increasing overburden pressure. With the

enhancement of maturity, adsorption capacity increase

again with the increasing pore volume and specific area

because of the increasing reservoir pressure coefficient.

3.2 Coal rank effect on adsorption constant b

To analyze the relationship between Langmuir constant b
and vitrinite reflectance Ro;max, we did the Fig. 2.

Figure 2 indicates that constant b follows a downward,

discrete, second-order polynomial trends with vitrinite

reflectance Ro;max, which is not related to coal type. Con-

stant b for the Lignite/subbituminous is between 0 and

0.9 MPa−1, for low volatile bituminous is between 0.15 and

1.8 MPa−1, for middle volatile bituminous is between 0.25

and 2 MPa−1, for high volatile bituminous is between 0.55

and 2.1 MPa−1 and for semi-anthracite/anthracite is

between 0.56 and 2.25 MPa−1. The variation range is

between the upper and lower curves represented in the

equations of bmax ¼ �0:16R2
o;max þ 0:74467Ro;max þ 0:899

and bmin ¼ �0:2687R2
o;max þ 1:321Ro;max � 0:6754, and the

corresponding average curve is: bavr ¼ �0:43019R2
o;maxþ

0:90056Ro;max þ 0:86969, from the corresponding average

curve, we can see that the constant b increase as the coal

rank increase in the range of Ro;max ¼ 0:4%�1:05%; while

in the range of Ro;max ¼ 1:05%�7%, The constant b
decreases as the coal rank increases. And from the upper

curve, we can see that the constant b reaches max at

Ro;max = 1.765MP−1.

3.3 Coal rank effect on adsorption Qdaf

The Eq. (10) was employed to obtain dry ash-free basis gas

content Qdaf :

Qdaf ¼ adafbP

1þ bP
ð10Þ

Set the equilibrium pressure in Eq. (10) as 1 MPa, we can

obtain the corresponding gas content Qdaf . Figure 3 shows

the relationship between Qdaf at 1 MPa and the vitrinite

reflectance Ro;max.

Figure 3 shows that Qdaf for the Lignite/subbituminous

is between 0 and 8 m3/t, for low volatile bituminous is

between 3 and 24 m3/t, for middle volatile bituminous is

between 5 and 29 m3/t, for high volatile bituminous is

between 6 and 36 m3/t and for semi-anthracite/anthracite

is between 8 and 30 m3/t. The variation range is between

the upper and lower curves represented in the equations

of Qdaf;max ¼ �4:9549R2
o;max þ 13:263Ro;max þ 27:6 and

Qdaf;min ¼ 2:847R2
o;max � 1:84Ro;max þ 4:97.

Fig. 1 Value of adsorption constant adaf versus vitrinite reflectance

Ro;max. (Data size: NERC-290, Chinese (Zhang and Yang 1999; Fu

et al. 2002; Zhang et al. 2004; Fu et al. 2005; Su et al. 2005; Su et al.

2006; Chen et al. 2008; Fu et al. 2008; Zhang and Sang 2008; Wang

et al. 2008; Yu et al. 2008a; Chen et al. 2008; Jiang 2009; Zhang and

Sang 2009; Yang et al. 2009; Ren 2010; Tian et al. 2010; Zhang et al.

2011; Zhang Jun-fan and Liang Wen-qing 2011; Zheng 2012; Gao

2012; Ma et al. 2014; Zhang et al. 2014)-173; English(Joubert et al.

1973; Yalçin and Durucan 1991; Beamish and O’Donnell 1992;

DeGance et al. 1993; Chaback et al. 1996; Bustin and Clarkson 1998;

Nodzeński 1998; Faiz et al. 2007a, b; Yu et al. 2008a, b, c; Xiao and

Wang 2011)-103)

Fig. 2 Value of adsorption constant b versus vitrinite reflectance

Ro;max. (Data size: NERC-290, Chinese (Zhang and Yang 1999; Su

et al. 2006; Ma et al. 2008; Yang et al. 2009; Tian et al. 2010; Zheng

2012; Gao 2012; Ma et al. 2014; Pan and Xu 2015; Xu and Pan 2015)-

217, English (Joubert et al. 1973; Yalçin and Durucan 1991; DeGance

et al. 1993; Chaback et al. 1996; Bustin and Clarkson 1998;

Nodzeński 1998; Faiz et al. 2007a, b; Yu et al. 2008a, b, c)-153)
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3.4 Coal rank effect on gas content of raw coal

Taken into account the factors influence the actual gas

content, we applied the Eq. (11) (Chen et al. 2010; Gao

2012) for transformation:

Q ¼ Qdaf

100� Aad �Mad

100

1

1þ 0:31Mad

ð11Þ

where, Aad is the air dried basis ash, %; Mad is the air dried

basis moisture, %; Qdaf is the dry ash-free basis gas con-

tent, m3/t; Q is the gas content of raw coal, m3/t.

Figure 4 shows the relationship between Q at 1 MPa and

the vitrinite reflectance Ro;max:

From Fig. 4, it can be concluded that the Q increases

with the coal rank. The formula between Q and Ro;max was

shown in Eq. (12):

Q ¼ kQRo;max þ bQ ð12Þ
where, Q is the gas content at the equilibrium pressure of

1 MPa; kQ and bQ are the coefficients in Eq. (12), and

kQ [ 0.

Figure 4 shows that Q for the Lignite/subbituminous is

between 0 and 5 m3/t, for low volatile bituminous is

between 2 and 12 m3/t, for middle volatile bituminous is

between 1 and 13 m3/t, for high volatile bituminous is

between 1 and 15 m3/t and for semi-anthracite/anthracite

is between 3 and 15 m3/t. The variation range is between

the upper and lower curves represented in the equations

of Qmax ¼ 4:49Ro;max þ 8:9386 and Qmin ¼ 3:9266Ro;max

�2:545. Comparing with Fig. 3, it can be seen that the

value of Q is smaller than Qdaf because of the Physico-

chemical difference.

4 Analysis of factors effect on adsorption capacity
of coal

4.1 Proximate composition effect on adsorption
capacity

Proximate analysis is usually used to define the chemical

composition of coals. With proximate analysis, the sub-

stances of moisture, ash, volatile matter and fixed carbon in

the coal content are determined as weight percent. In the

four indexes, moisture and ash represents the inorganic

material, while volatile and fixed carbon represents the

organic material.

4.1.1 Volatile content effect on adsorption capacity

Commonly used indexes for Volatile are: dry air basis

volatile (Vad), dry basis volatile (Vd), dry ash-free basis

volatile (Vdaf) and Received basis volatile (Var). To avoid

the effect of moisture, ash on volatile matter, the volatile

matter was determined by using dry ash-free basis on

weight percent. Figure 5 shows the relationship between

volatile (Vdaf) and vitrinite reflectance (Ro;max).

Figure 5 shows the relationship between Dry ash-free

basis volatile Vdaf and Vitrinite reflectance Ro;max expressed

in Eq. (13):

Fig. 3 Value of adsorption constant Qdaf versus vitrinite reflectance

Ro;max. (Data size: NERC-290, Chinese (Yu et al. 2005; Zhang 2007;

Zheng 2012; Zou et al. 2013; Liu et al. 2015; Yue et al. 2016)-217,

English(Joubert et al. 1973; Yalçin and Durucan 1991; DeGance et al.

1993; Chaback et al. 1996; Bustin and Clarkson 1998; Nodzeński

1998; Yu et al. 2008a, b, c)-153)

Fig. 4 Value of adsorption constant Q versus vitrinite reflectance

Ro;max. (Data size: NERC-290, Chinese (Yu et al. 2008a; Ma et al.

2008; Jiang 2009; Tian et al. 2010; Zhang et al. 2011; Zheng 2012;

Gao 2012; Ma et al. 2014; Xu and Pan 2015)-117, English(Joubert

et al. 1973; Yalçin and Durucan 1991; DeGance et al. 1993; Chaback

et al. 1996; Nodzeński 1998; Yu et al. 2008a, b, c)-153)
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Vdaf ¼ kvdafR
bvdaf
o;max ð13Þ

where, Vdaf is the dry ash-free basis volatile; kvdaf , bvdaf are
the coefficients in Eq. (13), and kvdaf [ 0, bvdaf\0.

The first and order derivative are separately shown in

Eqs. (14) and (15):

V 0
daf ¼ kvdafbvdafR

bvdaf�1
o;max ð14Þ

V 0
daf ¼ kvdafbvdafðbvdaf � 1ÞRbvdaf�2

o;max ð15Þ
As kvdaf [ 0, bvdaf\ 0, the first derivative (Eq. 14) of

Eq. (13) is always less than zero, while the second

derivative (Eq. 15) is always greater than zero. According

to the properties of function, it can be concluded that

Eq. (13) exhibits depression, power-decreasing type. In

conclusion, volatile decrease with the increase of coal

rank, and compared with the higher coal rank, the volatile

at the low metamorphic grade has a much more signifi-

cantly decrease. The reason is that Volatile matter are

mainly small molecular compound broke from unsatu-

rated group in the side-chain of fat and the oxygen-con-

taining functional groups that decreases with the coal

rank.

Figure 5 shows that Dry ash-free basis volatile Vdaf for

the Lignite/subbituminous is larger than 30%, for low

volatile bituminous is between 25% and 58%, for middle

volatile bituminous is between 10% and 38%, for high

volatile bituminous is between 5% and 20% and for semi-

anthracite/anthracite is smaller than 10%. The variation

range is between the upper and lower curves represented in

the equations of Vdaf;max ¼ 42:39R�1:183
o;max and Vdaf;min ¼

16:39R�0:756
o;max , and the corresponding average curve is

Vdaf;avr ¼ 29:63R�1:05
o;max . For low metamorphic bituminous

coal, the vitrinite reflectance changes smaller with scat-

tered volatile Vdaf content falling in 25%–58%;

Features for the mid volatile bituminous coal are with

the wide range of volatile matter content falling in 10%–

38% because of the complex generation environment and

constitution of coal rock; volatile matter content of the high

volatile bituminous coal falls in 5%–20%; while the vola-

tile matter content in anthracite is the lowest, less than

10%.

Combing Eqs. (12) and (13), the quantitative formula of

Eq. (16) can be obtained:

Q ¼ kQ
Vdaf

kvdaf

� � 1
bvdafþbQ ð16Þ

Q0 ¼ kQ

bvdafk
1

bvdaf
vdaf

V
1

bvdaf
�1

daf ð17Þ

Q00 ¼
kQ 1

bvdaf
� 1

� �

bvdafk
1

bvdaf
vdaf

V
1

bvdaf
�2

daf ð18Þ

As 1
bvdaf

\0, kQ [ 0, kvdaf [ 0, so k
1

bvdaf
vdaf [ 0,the first

derivative (Eq. 17) of Eq. (16) is always less than zero,

while the second derivative (Eq. 18) is always greater than

zero, thus, it can be concluded that Eq. (16) exhibits

depression, power-decreasing type, it can be concluded that

gas content in raw coal decreases with the increase of dry

ash-free basis volatile Vdaf , and the gas content in raw coal

at the low metamorphic grade has a much more signifi-

cantly decrease.

4.1.2 Moister content effect on adsorption capacity

Moisture in coal generally divided into inherent moisture

and external moisture. Inherent moisture existing in the

underdeveloped pore is from the plant turned to coal;

external moisture existing in the well-developed pore and

crack is form the process of mining and transport. The

moisture was determined using air dried basis on weight

percent, expressed in Mad with the value equal to inherent

moisture. Figure 6 shows the relationship between air dried

basis moisture (Mad) and vitrinite reflectance (Ro;max).

Figure 6 show that moisture in coal decreases with the

coal rank, and the functional relationship between inherent

moisture Mad and vitrinite reflectance Ro;max is shown in

Eq. (19):

Mad ¼ kmad expðRo;max=cmadÞ þ bmad ð19Þ

Fig. 5 Variation of Vdaf with vitrinite reflectance Ro;max. (Data size:

NERC-189, Chinese (Yu et al. 2004; Chang et al. 2006; Qin et al.

2007; Chang et al. 2008; Chen et al. 2010; Hao et al. 2012; Zheng

2012; Jiang et al. 2012; Gao 2012; Lin et al. 2013; Li et al. 2013; Xiao

et al. 2016)-135, English, (Mahajan and Walker 1971; Joubert et al.

1973; Yalçin and Durucan 1991; DeGance et al. 1993; Chaback et al.

1996; Nodzeński 1998; Wang 2012)-171)
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where Mad is air dried basis inherent moisture, %; kmad,

cmad, bmad are coefficients of Eq. (19), and cmad\0,

kmad [ 0.

The first and order derivative are separately shown in

Eqs. (20) and (21):

M 0
ad ¼

kmad

cmad

exp Ro;max=cmad

� � ð20Þ

M 00
ad ¼

kmad

c2mad

exp Ro;max=cmad

� � ð21Þ

As cmad\0, kmad [ 0, the first derivative (Eq. 20) of

Eq. (19) is always less than zero, while the second

derivative (Eq. 21) is always greater than zero, thus, it can

be concluded that Eq. (19) exhibits depression, exponent-

decreasing type, it can be concluded that inherent moisture

decreases with the coal rank and has a much more signif-

icantly decrease at the low metamorphic grade. From

Fig. 6, it can be seen that the maximum of moisture are

generally less than the values in the curves of

Mad;max ¼ 2:217þ 83:84 exp Ro;max=� 0:64
� �

. The ranges

of inherent moisture in subbituminous coal are from 0%

to 55%, in low volatile bituminous coal with lots of

pores are from 0% to 35%, in mid volatile bituminous

coal with lots of hydrophobic fused ring structure in

organic structure are from 0% to 30%, in high volatile

bituminous coal are from 0% to 8%, in anthracite are

from 0% to 10%. Besides, at the range of 3.2%–4.2%

and 5.2%–5.9% had an increasing zone, and the corre-

sponding inherent moisture are separately 0%–10% and

0%–9%, the possibly reason maybe the existence of the

aphanitic structure.

Reasons for the changing trend of inherent moisture are

summarized below: (1) adsorption character of pore sur-

face on moisture, the higher internal surface area is the

high moisture absorbed. (2) The more Polarity oxygen-

containing groups in coal, the larger inherent moisture

content. (3) The surface area and Polarity oxygen-con-

taining groups decrease with the increase of coal rank,

resulting in the decease of inherent moisture.

Combing Eqs. (12) and (19), Eq. (22) can be obtained:

Q ¼ kQcmad ln
Mad � bmad

kmad

� �
þ bQ ð22Þ

Q
0 ¼ kQcmad

Mad � bmad

ð23Þ

Q
00 ¼ �kQcmad

Mad � bmadð Þ2 ð24Þ

As kQ [ 0, cmad\0, kmad [ 0, the first derivative (Eq. 23)

of Eq. (22) is always less than zero, while the second

derivative (Eq. 24) is always greater than zero, thus, it

can be concluded that Eq. (22) exhibits depression, log-

arithmic-decreasing type, that is the gas content Q in raw

coal has a negative relationship with the inherent moisture

Mad. Also, it can be concluded from Eq. (22) that gas

content Q in raw coal has a much more significantly

decrease at the low inherent moisture grade. The reasons

for the effects of moisture content on adsorption of coal

are generally as follow: (1) Effective adsorption sites at

the pore surface are limited, the more the moisture is, the

more adsorption sites can be occupied, then the less

adsorption sites can be used for methane. (2) The pref-

erential adsorption of moisture results in the decreased

gas content. (3) Due to the adsorption of methane in

micro-pore with high capillary pressure and strong self-

priming capacity, the moisture in coal can restrict the

adsorption of methane. (4) Existing of moisture can cause

matrix shrinkage of coal resulting in the decrease of gas

content.

Fig. 6 Variation of Mad with vitrinite reflectance Ro;max. (Data size:

NERC-189, Chinese (Yu et al. 2004; Chang et al. 2006; Qin et al.

2007; Chang et al. 2008; Hao et al. 2012; Zheng 2012; Jiang et al.

2012; Gao 2012; Lin et al. 2013; Li et al. 2013; Xiao et al. 2016)-169,

English(Allardice and Evans 1971; Mahajan and Walker 1971;

Bhattacharyya 1972; Joubert et al. 1973; Reucroft and Patel 1986;

Banerjee 1988; Barker-Read and Radchenko 1989; Yalçin and

Durucan 1991; Ciembroniewicz and Marecka 1993; DeGance et al.

1993; Chaback et al. 1996; Clarkson et al. 1997; Crosdale et al. 1998;

Bustin and Clarkson 1998; Friesen and Mikula 1988; Özgen Karacan

and Okandan 2000; Laxminarayana and Crosdale 2002; Busch et al.

2003; Wang and Takarada 2003; Weishauptová et al. 2004; Mastalerz

et al. 2004; Fitzgerald et al. 2005; Hildenbrand et al. 2006; Bae and

Bhatia 2006; Dai et al. 2006; Busch et al. 2006; Faiz et al. 2007a, b;

Saghafi et al. 2007; Majewska and Ziętek 2007; Faiz et al. 2007a, b;

Astashov et al. 2008; Yu et al. 2008a, b, c; Zhang 2008; Dutta et al.

2008; Day et al. 2008; Pini, et al. 2009; Kędzior 2009; Pone et al.

2009; Majewska et al. 2009; Majewska et al. 2010; Battistutta et al.

2010; Gensterblum et al. 2010; Pan et al. 2010; He, et al. 2010; Jin

et al. 2010; Kim et al. 2011; Day et al. 2011; Wang 2012; An et al.

2013; Dutka et al. 2013; Hao et al. 2013; Kutchko et al. 2013)-258)
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4.1.3 Ash content effect on adsorption capacity

Ash is the remaining residue after full combustion of coal,

and almost all of it comes from minerals. Usually, the ash

content is proportional to the mineral content. Ash is not an

inherent component of coal but a very different matter from

minerals in coal. First, the ash content is lower than cor-

responding mineral content, and then their composition is

changed, Minerals at high temperature after decomposi-

tion, oxidation, combining chemical reaction can turn into

ash. Because of the changed moisture in the air dried coal

with the change of air humidity, the ash content of the coal

sample changed. But in terms of absolute dry coal, the ash

content is the same. Thus, dry basis ash Ad is used in the

actual. Figure 7 shows the relationship between dry basis

ash (Ad) and vitrinite reflectance (Ro;max).

Figure 7 shows that the ash content value is more dis-

persed. This is because the ash is affected largely by the

geological evolution conditions; Ash showed a decreasing

trend with the increase metamorphism degree. The maxi-

mum ash value does not exceed the curve shown in this

formula: Ad;max ¼ �8:657Ro;max þ 68:435. The ranges of

ash content in subbituminous coal are from 0% to 70%, in

low volatile bituminous coal are from 0% to 62%, in mid

volatile bituminous coal are from 0% to 59%, in high

volatile bituminous coal are from 0% to 49%, in anthracite

are from 0% to 43%.

Existence of ash in coal has adverse effects on coal

adsorption capacity. The effect mechanism of ash on coal

adsorption is mainly: (1) the first is based on the principle

of similar compatibility, the properties of methane is sim-

ilar to the organic matter with weak polarity and better

adsorption character, but ash is mostly inorganic with weak

adsorption capacities, the presence of ash reduced the

adsorption content of methane in coal; (2) the presence of

silica, iron, calcium and magnesium and other group,

especially the presence of metal elements resulting in the

basal cementation tendency of rock, and the increasing

cements will block the coal pore and fissure, reducing the

porosity of coal, resulting in the decreasing of adsorption

capacity of methane in coal. The comprehensive function

of the two aspects reduces the ability of organic matter to

adsorb methane in coal, In view of this, in the evaluation of

ash effect on adsorption of coal, authors should consider

not only the impact of ash content, but also consider the

state of ash adsorption sites.

4.1.4 Fixed carbon content effect on adsorption capacity

Carbon Fixed is the residue after subtracting the ash from

the coke residue determined after the measurement of

volatile in coal, In fact, it is the pyrolysis product produced

by the organic matter under certain heating conditions, and

it is a part of the coke residue. Carbon Fixed is mainly

composed of carbon elements, some of the hydrogen, sulfur

and a small amount of oxygen and nitrogen elements. In

proximate analysis, Fixed carbon always expressed in Fcad,
Fig. 8 shows the relationship between Fixed carbon (Fcad)
and Vitrinite reflectance (Ro;max).

Figure 8 shows the relationship between air dried basis

Fixed carbon and vitrinite reflectance:

Fcad ¼ kFcad expðcFcadRo;maxÞ þ bFcad ð25Þ
where, Fcad is air dried basis fixed carbon, %; kFcad, cFcad,
bFcad are coefficients of Eq. (25),and cFcad\0, kFcad\0.

The first and order derivative are separately shown in

Eqs. (26) and (27):

Fc0ad ¼
kFcad
cFcad

exp Ro;maxcFcad
� � ð26Þ

Fc
00
ad ¼

kFcad
c2Fcad

expðRo;maxcFcadÞ ð27Þ

As cFcad\0, kFcad\0, the first derivative (Eq. 26) of

Eq. (25) is always larger than zero, while the second

derivative (Eq. 27) is always less than zero, thus, it can be

concluded that Eq. (25) exhibits up-convex, power-de-

creasing type, it can be concluded that Fixed carbon

increases with the increase of coal rank, and at low meta-

morphic stage, Fixed carbon content increases greatly.

Figure 8 shows that with the increase of coal rank, the

fixed carbon content exists the upper and lower curves

Fig. 7 Variation of Ad with vitrinite reflectance Ro;max. (Data size:

NERC-189, Chinese (Yu et al. 2004; Chang et al. 2006; Qin et al.

2007; Chang et al. 2008; Hao et al. 2012; Zheng 2012; Gao 2012;

Jiang et al. 2012; Li et al. 2013; Lin et al. 2013; Xiao et al. 2016)-268,

English, (Mahajan and Walker 1971; Joubert et al. 1973; Yalçin and

Durucan 1991; DeGance et al. 1993; Chaback et al. 1996; Bustin and

Clarkson 1998; Nodzeński 1998; Hildenbrand et al. 2006; Faiz et al.

2007a, b; Faiz et al. 2007; Yu et al. 2008a, b, c; Gensterblum et al.

2010; Taraba 2011; Wang 2012)-297)
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expressed in the following equations:Fcad;max ¼ 92:3433�
88:918 expð�1:7628Ro;maxÞ and Fcad;min ¼ 73:01726�
273:61127 expð�0:9814Ro;maxÞ, The corresponding aver-

age curve is as follow: Fcad;avr ¼ 82:57758� 162:60685

expð�1:03532Ro;maxÞ,besides, The ranges of fixed carbon

content in subbituminous coal are from 2% to 56%, in low

volatile bituminous coal are from 18% to 70%, in mid

volatile bituminous coal are from 18% to 85%, in high

volatile bituminous coal are from 21% to 92%, in anthra-

cite are from 50% to 95%.

Combing Eqs. (25) and (12):

Q ¼ kQ
cFcad

ln
Fcad � bFcad

kFcad

� �
þ bQ ð28Þ

Q0 ¼ kQ=cFcad
Fcad � bFcad

ð29Þ

Q00 ¼ �kQ=cFcad

Fcad � bFcadð Þ2 ð30Þ

As kQ [ 0, cFcad\0, kFcad\0,the first derivative (Eq. 29)

of Eq. (28) is always greater than zero, while the second

derivative (Eq. 30) is always greater than zero, thus, it can

be concluded that Eq. (28) exhibits depression, logarith-

mic-increasing type. The increase of carbon Fixed content

has a reinforcing effect on the adsorption capacity of raw

coal, and in the low carbon Fixed content stage, the amount

adsorbed gas in coal decreases significantly.

The research shows that with the increase of carbon

fixed content, the specific surface area and pore volume

increases, The surface morphology of coal shows that the

particles become small, the size is uniform, the arrange-

ment is more orderly, the space for the adsorption of

methane in coal is increasing, and finally the coal methane

adsorption capacity is enhanced.

4.2 Maceral composition effect on adsorption
capacity of raw coal

The maceral types in coals are mainly vitrinite, inertinite,

rare exinite and little mineral matter. Differences of mac-

eral groups in composition and structure resulted in the

different characteristics, and these characteristics directly

decides the macroscopic properties of coal. Branch of

various group experienced different changes, resulting in

the difference of chemical composition, molecular struc-

ture and pore. Gelation and wire charring effect is different,

resulting in different degree of plant tissue preservation. In

the process of coal metamorphism, the difference of

hydrocarbons, volatile matter content resulted in the dif-

ferent pore growth degree. Thus, there is difference in the

adsorption capacity of macerals.

It is generally believed that adsorption capacity of exi-

nite is the lowest, and as the main components of the

organic maceral, the vitrinite and inertinite have the strong

adsorption capacity with the increase in the metamorphism

degree, the two show the shift tendency, indicating that

inertinite gradually evolved into vitrinite. Therefore, in this

paper, we mainly study the relationship between vitrinite

and inertinite with the metamorphism degree, in order to

get the effect of the two matters on adsorption capacity.

4.2.1 Vitrinite content effect on adsorption capacity

Vitrinite is the main maceral in coal, and is the jelly-like

substance formed from the wood cellulose of plant tissue

under the gel conditions. According to the intact degree of

cell structure and cell forms, size and other characteristics,

the most common vitrinite components are divided into

anthraxylon, homocollinite and degradinite. Figure 9 rep-

resents the relationship between vitrinite and vitrinite

reflectance (Ro;max).

Figure 9 shows that, the relationship between vitrinite

and vitrinite reflectance is expressed as Eq. (31)

Fig. 8 Variation of Fcad with vitrinite reflectance Ro;max. (Data size:

NERC-189, Chinese (Yu et al. 2004; Chang et al. 2006; Qin et al.

2007; Chang et al. 2008; Hao et al. 2012; Zheng 2012; Jiang et al.

2012; Gao 2012; Li et al. 2013; Lin et al. 2013)-266, English

(Mahajan and Walker 1971; Bhattacharyya 1972; Joubert et al. 1973;

Joubert et al. 1974; Yang and Saunders 1985; Banerjee 1988; Friesen

and Mikula 1988; Barker-Read and Radchenko 1989; Yalçin and

Durucan 1991; DeGance et al. 1993; Chaback et al. 1996; Clarkson

et al. 1997; Crosdale et al. 1998; Bustin and Clarkson 1998; Özgen

Karacan and Okandan 2000; Laxminarayana and Crosdale 2002;

Wang and Takarada 2003; Weishauptová et al. 2004; Fitzgerald et al.

2005; Bae and Bhatia 2006; Dai et al. 2006; Saghafi et al. 2007;

Majewska and Ziętek 2007; Faiz et al. 2007a, b; Siemons et al. 2007;

Yu et al. 2008a, b, c; Zhang 2008; Dutta et al. 2008; Day et al. 2008;

Majewska et al. 2009; Kędzior 2009; Pini et al. 2009; Pone et al.

2009; Battistutta et al. 2010; Pan et al. 2010; Gensterblum et al. 2010;

He et al. 2010; Kim et al. 2011; Day et al. 2011; Wang 2012; Dutka

et al. 2013; An et al. 2013; Hao et al. 2013; Kutchko et al. 2013)-268)
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Vitrinite ¼ kvitrc
Ro;max

vitr þ bvitr ð31Þ
where kvitr, cvitr, bvitr are the coefficients in Eq. (31) and

kvitr\0, ciner\1.

The first and order derivative are separately shown in

Eqs. (32) and (33):

Vitrinite0 ¼ kvitr ln cvitrc
Ro;max

vitr ð32Þ
Vitrinite00 ¼ kvitr ln

2 cvitrc
Ro;max

vitr ð33Þ
As kvitr\0, ciner\1, the first derivative (Eq. 32) of

Eq. (31) is always greater than zero, while the second

derivative (Eq. 33) is always less than zero, thus, it can be

concluded that Eq. (31) exhibits up-convex, exponent-in-

creasing type. It can be concluded that vitrinite content

increases with the coal rank and at low metamorphic stage,

vitrinite content increases greatly. The reason is: with the

increase of metamorphism degree, exinite continuously

generate hydrocarbon with a decreasing rate; in the stage of

low metamorphic degree, exinite experience decarboxyla-

tion and the generation of oil process; the mid metamorphic

stage experiences the transformation of gaseous hydrocar-

bons process. Therefore, in the stage of low metamorphic

degree, is commonly seen, to mid metamorphic stage

degree, the number of exinite reduced resulting in the

increase of vitrinite content.

Besides, Fig. 9 shows that the minimum value of vit-

rinite content are generally larger than the curve expressed

in the following equal: Vitrinitemin ¼ 76:14� 16996�
0:01063Ro;max , and the corresponding curve is

Vitriniteavr ¼ 88:07� 8498� 0:01063Ro;max . The ranges of

vitrinite content in subbituminous coal are from 11% to

97%, in low volatile bituminous coal are from 5% to 99%,

in mid volatile bituminous coal are from 5% to 97%, in

high volatile bituminous coal are from 8% to 97%, in

anthracite are from 62% to 97%.

Combing Eqs. (31) and (12), the following Eq. (34) can

be obtained:

Q ¼ kQ
ln cvitr

ln
Vitrinite � bvitr

kvitr

� �
þ bQ ð34Þ

Q
0 ¼ kQ

ln cvitr

1

Vitrinite� bvitr
ð35Þ

Q
00 ¼ �kQ

ln cvitr

1

Vitrinite� bvitrð Þ2 ð36Þ

As kQ [ 0, cvitr\1, ln ciner\0, so
kQ

ln ciner
\0, and also

because kvitr\0, the first derivative (Eq. 35) of Eq. (34) is

always greater than zero, while the second derivative

(Eq. 36) is always greater than zero, thus, it can be con-

cluded that Eq. (34) exhibits depression, logarithmic-in-

creasing type. It can be concluded that there is a positive

relationship between gas content and vitrinite content and

at low vitrinite content stage, gas content increases slowly.

This is because of the loose structure of coal sample with

the higher vitrinite content, the less water absorption, the

formation of the gel like network structure. Besides, with

the increase of metamorphism degree, there are more

volatile matter produced in vitrinite, resulting in the

increase in the number of micropores, the increase of the

surface area and the adsorption capacity of coal.

4.2.2 Inertinite content effect on adsorption capacity

Inertinite is one of the common macerals in coal, and its

content is lower than that of vitrinite in coal, It is made of

wood carbonization products of fibrous tissue in the peat

swamps, under oxidizing conditions, plant body experience

a greater degree of aromatic condensation due to the loss of

oxidized atoms resulting in the dehydrogenation and

dehydration, The most common inertinite components are

fusinite, fusovitrite and macrinite. According to the struc-

ture and morphology of cell, Inertinite is divided into

fusinite, half fusinite, fungus, secretion, coarse grain, par-

ticles, debris of inertinite, etc. Figure 10 shows the

Fig. 9 Variation of vitrinite content with vitrinite reflectance Ro;max.

(Data size: NERC-61, Chinese (Yu et al. 2004; Chang et al. 2006; Qin

et al. 2007; Chang et al. 2008; Jiang et al. 2012; Lin et al. 2013; Xu

and Pan 2015; Xiao et al. 2016)-159, English(Gan et al. 1972; Nelson

et al. 1980; Giuliani et al. 1991; Crosdale et al. 1998; Marecka and

Mianowski 1998; Bustin and Clarkson 1998; Laxminarayana and

Crosdale 2002; Busch et al. 2003; Mastalerz et al. 2004; Hildenbrand

et al. 2006; Busch et al. 2006; Siemons et al. 2007; Busch et al. 2007;

Faiz et al. 2007a, b; Majewska and Ziętek 2007; Yu et al. 2008a, b, c;

Astashov et al. 2008; Day et al. 2008; Mazumder and Wolf 2008;

Pone et al. 2009; Majewska et al. 2009; Radliński et al. 2009;

Battistutta et al. 2010; Gensterblum et al. 2010; He et al. 2010; Kim

et al. 2011; Day et al. 2011; Le Gal et al. 2012; Maphala and Wagner

2012; Sakurovs 2012; An et al. 2013; Cai et al. 2013a, b; Dutka et al.

2013)-292)
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relationship between inertinite and Vitrinite reflectance

(Ro;max).

Figure 10 shows that the relationship between inertinite

and vitrinite reflectance can be expressed in Eq. (37)

Inertinite ¼ kinerc
Ro;max

iner þ biner ð37Þ
where kiner, ciner, biner are the coefficients in Eq. (37) and

kiner [ 0, ciner\1.

The first and order derivative are separately shown in

Eqs. (38) and (39):

Inertinite ¼ kiner ln cinerc
Ro;max

iner ð38Þ
Inertinite00 ¼ kiner ln

2 cinerc
Ro;max

iner ð39Þ
As kiner [ 0, ciner\1,the first derivative (Eq. 38) of

Eq. (37) is always less than zero, while the second

derivative (Eq. 39) is always greater than zero, thus, it can

be concluded that Eq. (37) exhibits depression, exponent-

decreasing type, that is the relationship between inertinite

and vitrinite reflectance presents negative exponential

correlation. Inertinite is negative exponential decline with

the increase of metamorphism degree, and at the low

metamorphism degree inertinite decreases largely.

Figure 10 shows that the data for the relationship

between inertinite and vitrinite reflectance are more

dispersed, and its maximum value did not exceed the upper

curve with the following equation: Inertinitemax ¼ 18:557þ
706:1 � 0:11058Ro;max , and the corresponding average curve

is: Inertiniteavr ¼ 9:2785þ 353:05� 0:11058Ro;max . The

ranges of inertinite content in subbituminous coal are from

0% to 78%, in low volatile bituminous coal are from 0% to

82%, in mid volatile bituminous coal are from 0 to 80 in

high volatile bituminous coal are from 0% to 62%, in

anthracite are from 0% to 37%.

Combing Eqs. (37) and (12), the Eq. (40) can be

obtained:

Q ¼ kQ
ln ciner

ln
Inertinite� biner

kiner

� �
þ bQ ð40Þ

Q
0 ¼ kQ

ln ciner

1

Inertinite� biner
ð41Þ

Q
00 ¼ �kQ

ln ciner

1

Inertinite � binerð Þ2 ð42Þ

As kQ [ 0, ciner\1, so ln ciner\0, the first derivative

(Eq. 41) of Eq. (40) is always less than zero, while the

second derivative (Eq. 42) is always greater than zero, thus,

it can be concluded that Eq. (40) exhibits depression log-

arithmic-decreasing type. That is, the gas content has a

negative relationship with inertinite content, and at the low

inertinite content stage, gas content decreases largely. The

reason is that: inertinite has the greatest proportion of

pores, a smaller surface area, and has a lot of internal

oxygen functional groups and, therefore, has a weak

adsorption capacity.

4.3 Ultimate analysis effect on adsorption capacity

Coal contains a lot of elements, but as the coal organic

matter composition, the mainly five elements is carbon,

hydrogen, oxygen, nitrogen, sulfur. These elements content

are related to the formation of coal type, coal and rock

composition and the degree of coalification. The different

elements show not only the degree of coal metamorphism,

but also reflect the coal nature. Carbon, hydrogen, and

oxygen of Coal are mainly aromatic structure, aliphatic and

alicyclic structure, the sum occupies more than 95%, and

thus play major role in the adsorption ability of coal, and

so, this paper mainly studies the three elements effect on

the coal adsorption abilities.

4.3.1 Carbon content effect on adsorption capacity

Carbon is an important component of organic matter in

coal. It is the main element of hex-acyclic-ring in the coal

structure. A small amount of carbon is present in carbonate

and carbon dioxide, and the content of carbon in coal is

higher than that in any other element. Therefore, the

Fig. 10 Variation of Intertinite content with vitrinite reflectance

Ro;max. (Data size: NERC-64, Chinese (Ceglarska-Stefańska and

Brzóska 1998; Yu et al. 2004; Chang et al. 2006; Qin et al. 2007; Faiz

et al. 2007a, b; Chang et al. 2008; Jiang et al. 2012; Lin et al. 2013;

Xiao et al. 2016)-233, English(Giuliani et al. 1991; Crosdale et al.

1998; Bustin and Clarkson 1998; Marecka and Mianowski 1998;

Laxminarayana and Crosdale 2002; Busch et al. 2003; Mastalerz et al.

2004; Busch et al. 2006; Hildenbrand et al. 2006; Busch et al. 2007;

Majewska and Ziętek 2007; Siemons et al. 2007; Astashov et al.

2008; Day et al. 2008; Yu et al. 2008a, b; Mazumder and Wolf 2008;

Pone et al. 2009; Radliński et al. 2009; Majewska et al. 2009;

Gensterblum et al. 2010; Battistutta et al. 2010; He et al. 2010; Day

et al. 2011; Kim et al. 2011; Maphala and Wagner 2012; Sakurovs

2012; An et al. 2013; Cai et al. 2013a, b; Dutka et al. 2013)-169)
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metamorphism degree of coal is often referred to as car-

bonization degree. In order to reduce the impact of ash,

moisture and other content, we use ash-free basis Dry

indicator, Fig. 11 shows the relationship between carbon

and vitrinite reflectance (Ro;max).

Figure 11 shows that the relationship between carbon

content and vitrinite reflectance can be expressed in

Eq. (23)

Cdaf ¼ kC lnðRo;max þ bCÞ þ dC ð43Þ
where kC, bC, dC are the coefficients in Eq. (43) and

kC [ 0.

Solution of the first and the second derivative of Eq. (43)

are shown in (44) and (45):

C0
daf ¼

kC
Ro;max þ bC

ð44Þ

C00
daf ¼

�kC

Ro;max þ bC
� �2 ð45Þ

As kC [ 0, the first derivative (Eq. 44) of Eq. (43) is always

greater than zero, while the second derivative (Eq. 45) is

always less than zero, thus, it can be concluded that

Eq. (43) exhibits up-convex, logarithmic-increasing type.

That is, the content of carbon in coal increases with the

increase of metamorphism degree. In the stage of low

metamorphic grade, the increase of carbon content is lar-

ger. The reason is that: with the increase of coal rank, the

microstructure of coal tends to be regular. Figure 11 shows

that the data for the relationship between carbon content

and vitrinite reflectance are limited in the upper and down-

ward curves: Cdaf;max ¼ 89:83þ 5:16 lnðRo;max � 0:215Þ
and Cdaf;min ¼ 83:62þ 5:788 lnðRo;max � 0:522Þ, The cor-

responding average curve is: Cdaf;avr ¼ 87:21þ 5:216

lnðRo;max � 0:47Þ, The ranges of carbon content in subbi-

tuminous coal are from 0% to 87%, in low volatile bitu-

minous coal are from 64% to 90.5%, in mid volatile

bituminous coal are from 67% to 94%, in high volatile

bituminous coal are from 82% to 95%, in anthracite are

from 87% to 99%. The reason is that at the low meta-

morphism degree, due to the shallow bury, compaction and

maturity is not high, so that the carbon content of coal is

less.

Combing Eqs. (43) and (12), The Eq. (46) can be

obtained:

Q ¼ kQ exp
Cdaf � dC

kC

� �
� bC

� 	
þ bQ ð46Þ

Q
0 ¼ kQ

kC
exp

Cdaf � dC
kC

� �
ð47Þ

Q
00 ¼ kQ

k2C
exp

Cdaf � dC
kC

� �
ð48Þ

As kQ [ 0, kC [ 0, the first and second derivatives (Eqs. 47

and 48) of Eq. (46) are always greater than zero, thus, it can

be concluded that Eq. (46) exhibits depression, exponent -

increasing type, That is, under the condition of the same

temperature, adsorption capacity of coal increases with the

increase of carbon content, and at the low carbon content

stage, the gas content increases slowly. This is due to the

increase of carbon content with the increase of coal rank,

and the microstructure of coal tends to be regular. With the

increase of Ro;max, the total porosity of coal increases,

especially for small pores. The pore specific surface area of

the coal is increasing, the adsorption capacity of coal is

increasing, and the adsorption ability of methane is

enhanced.

4.3.2 Hydrogen content effect on adsorption capacity

The importance of Hydrogen in coal is second only to the

Carbon element, because of its minimum atomic mass, the

number of atoms and Carbon elements are in the same

magnitude order, and even more than Carbon elements.

Hydrogen is also an important element in the composition

of coal macromolecular backbone and side-chain,

Fig. 11 Variation of C content with vitrinite reflectance Ro;max. (Data

size: Chinese (Ceglarska-Stefańska and Brzóska 1998; Chang et al.

2006; Qin et al. 2007; Chang et al.; Lin et al. 2013)-169, English

(Allardice and Evans 1971; Bhattacharyya 1972; Gan et al. 1972;

Joubert et al. 1973, 1974; Nandi and Walker 1975; Nelson et al. 1980;

Yang and Saunders 1985; Reucroft and Patel 1986; Banerjee 1988;

Friesen and Mikula 1988; Giuliani et al. 1991; DeGance et al. 1993;

Ciembroniewicz and Marecka 1993; Milewska-Duda et al. 1994;

Chaback et al. 1996; Martyniuk and Wiȩckowska 1997; Xu et al.

1997; Marecka and Mianowski 1998; Nodzeński 1998; Wang and

Takarada 2003; Fitzgerald et al. 2005; Bae and Bhatia 2006; Dai et al.

2006; Siemons et al. 2007; Busch et al. 2007; Majewska and Ziętek

2007; Day et al. 2008; Majewska et al. 2009; Pone et al. 2009;

Kędzior 2009; Radliński et al. 2009; Battistutta et al. 2010; Majewska

et al. 2010; Gensterblum et al. 2010; He et al. 2010; Taraba 2011;

Kim et al. 2011; Sakurovs 2012; Hao et al. 2013)-277)
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compared with the carbon element, hydrogen has greater

reaction capacity, hydrogen elements content is different in

different types of coal. Figure 12 shows the relationship

between Hydrogen content and vitrinite reflectance

(Ro;max).

Hydrogen content are closely related to coal rank. Fig-

ure 12 shows that the relationship between Hydrogen

content and vitrinite reflectance can be expressed by

Eq. (49).

Hdaf ¼ kH lnðRo;max þ bHÞ þ dH ð49Þ
where kH, bH, dH are the coefficients in Eq. (49),and kH\0.

The solution of the first and second derivative of

Eq. (49) are shown in Eqs. (50) and (51):

H 0
daf ¼

kH
Ro;max þ bH

ð50Þ

H 00
daf ¼

�kH

Ro;max þ bH
� �2 ð51Þ

As kH\0, the first derivative (Eq. 50) of Eq. (49) is always

less than zero, while the second derivative (Eq. 51) is

always greater than zero, thus, it can be concluded that

Eq. (49) exhibits depression, logarithmic-decreasing type,

That is the hydrogen content decreases with the increases

of coal rank, and at the low coal rank, The hydrogen

content decreases greatly.

Figure 12 shows that the data of the relationship between

hydrogen content and coal rank has the limits of the upper

and downward curves expressed in the following Equa-

tions: Hdaf;max ¼ 7:87474� 3:26191 lnðRo;max þ 0:50856Þ;
Hdaf;min ¼ 4:27974� 1:77558 lnðRo;max þ 0:62858Þ, the

equation for the corresponding average curve is: Hdaf;avr ¼
7:50833� 3:16908 lnðRo;max þ 1:19543Þ, The ranges of

hydrogen content in subbituminous coal are from 2.7% to

8.4%, in low volatile bituminous coal are from 2.5% to

6.9%, in mid volatile bituminous coal are from 2.5% to 7%,

in high volatile bituminous coal are from 2% to 6.2%, in

anthracite are from 0.3% to 5.3%. The reason for this

change is the formation of low metamorphic coal from the

Low hydrogen containing organisms.

Combing Eqs. (49) and (12), the Eq. (52) can be

obtained:

Q ¼ kQ exp
Hdaf � dH

kH

� �
� bH

� 	
þ bQ ð52Þ

Q
0 ¼ kQ

kH
exp

Hdaf � dH
kH

� �
ð53Þ

Q
00 ¼ kQ

k2H
exp

Hdaf � dH
kH

� �
ð54Þ

As kQ [ 0, kH\0, the first derivative (Eq. 53) of Eq. (52) is

always less than zero, while the second derivative (Eq. 54)

is always greater than zero, thus, it can be concluded that

Eq. (52) exhibits depression, exponent-decreasing type,

thus, the gas content dropped exponentially with the Dry

ash-free basis hydrogen content. The reason is that coal

methyl and methylene chain increases the methane

adsorption trap in coal, enhances adsorption ability of

methane on coal surface. And with the increase in meta-

morphic grade, side chain of coal decreased, resulting in

the hydrogen element content. Contribution of hydrogen to

the overall coal adsorption capacity is negative.

4.3.3 Oxygen content effect on adsorption capacity

Oxygen is one of the main elements of coal and mainly

consists of carboxyl (�COOH), hydroxyl (�OH�), car-

bonyl, methoxyl (�OCH3�), and ether groups (–C–O–C

–), and some of the oxygen combing with carbon skeleton

into a heterocyclic ring (White 1909). The total amount and

shape of oxygen in coal have a direct influence on the coal

properties. Figure 13 shows the relationship between

Oxygen content and vitrinite reflectance (Ro;max).

Figure 13 shows the relationship between oxygen con-

tent and vitrinite reflectance:

Odaf ¼ kOb
Ro;max

O þ dO ð55Þ

Fig. 12 Variation of H content with vitrinite reflectance Ro;max. (Data

size: Chinese (Chang et al. 2006; Qin et al. 2007; Chang et al. 2008;

Lin et al. 2013)-152, English(Allardice and Evans 1971; Bhat-

tacharyya 1972; Gan et al. 1972; Joubert et al. 1973, 1974; Nandi and

Walker 1975; Yang and Saunders 1985; Reucroft and Patel 1986;

Banerjee 1988; Friesen and Mikula 1988; Giuliani et al. 1991;

DeGance et al. 1993; Chaback et al. 1996; Marecka and Mianowski

1998; Martyniuk and Wiȩ̧ckowska 1997; Wang and Takarada 2003;

Fitzgerald et al. 2005; Dai et al. 2006; Bae and Bhatia 2006; Siemons

et al. 2007; Majewska and Ziętek 2007; Day et al. 2008; Pone et al.

2009; Radliński et al. 2009; Majewska et al. 2009; Kędzior 2009;

Majewska et al. 2010; Battistutta et al. 2010; Gensterblum et al. 2010;

He, et al. 2010; Kim et al. 2011; Taraba 2011; Sakurovs 2012; Hao

et al. 2013)-220)
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where kO, bO, dO are the coefficients in Eq. (55), and

kO [ 0, bO\1.

The solutions of the first and second derivative for the

Eq. (55) are shown in Eqs. (56) and (57):

Q0
daf ¼ kO ln bOb

Ro;max

O ð56Þ
O00

daf ¼ kO ln2 bOb
Ro;max

O ð57Þ
As kO [ 0, the first derivative (Eq. 56) of Eq. (55) is

always less than zero, while the second derivative (Eq. 57)

is always greater than zero, thus, it can be concluded that

Eq. (55) exhibits depression, exponent-decreasing type,

that is,the oxygen content decreases with the increase of

coal rank,and at the low metamorphic degree, the oxygen

declines greatly. Reasons for this change is increases of

oxygen content decreases the caking property of coal and

increased the hydrogen bound, so side chain of the six

carbon ring in young coal is more, and most of side chain

polar groups are oxygen containing functional groups. Side

chain will decrease with the coal rank, and finally resulting

in the decrease of oxygen content.

Figure 13 shows that the data for the relationship

between oxygen content and vitrinite reflectance exists

upper and downward limits expressed in the equations:

Odaf;max ¼ 4:98þ 67:19 � 0:1655Ro;max ,

Odaf ;min ¼ 0:866 þ 30:482 � 0:047Ro;max , the corresponding

average curve is expressed in the following equation:

Odaf;avr ¼ 2:943 þ 45:555 � 0:138Ro;max , from the dashed

line in Fig. 13, it can be seen that: The ranges of oxygen

content in subbituminous coal are from 1% to 29%, in low

volatile bituminous coal are from 0.9% to 26%, in mid

volatile bituminous coal are from 0.8% to 11.5%, in high

volatile bituminous coal are from 0% to 11%, in anthracite

are from 0% to 5.5%.

Combing the Eqs. (55) and (12), the Eq. (58) can be

obtained:

Q ¼ kQ
ln bO

ln Odaf � dOð Þ � ln kO½ � þ bQ ð58Þ

Q0 ¼ kQ
ln bO

1

Odaf � dO
ð59Þ

Q
000 ¼ �kQ

ln bO

1

Odaf � dOð Þ2 ð60Þ

As kQ [ 0, bO\1, ln bO\0, so
kQ

ln bO
\0, the first derivative

(Eq. 59) of Eq. (58) is always less than zero, while the

second derivative (Eq. 60) is always greater than zero, thus,

it can be concluded that Eq. (58) exhibits depression,

logarithmic-decreasing type, that is the oxygen has a neg-

ative effect on gas adsorption capacity, and at the low

oxygen content stage, the gas content decreases greatly.

The reason is that the oxygen element exists in the form of

oxygen functional groups in coal, And the oxygen func-

tional groups of carboxyl, hydroxyl and aldehyde reduced

the adsorption wells of methane, weakened the adsorption

capacity of methane. Therefore, the reduction of oxygen

functional groups in coal increases the adsorption capacity

of coal. It was observed that there was, in general, a pos-

itive correlation between the methane saturated adsorption

capacity and the micropore volume of coals while a neg-

ative correlation between methane saturated adsorption

capacity and the Ototal/Ctotal. Coal with a higher amount of

oxygen surface groups, and consequently with a less

hydrophobic character, had lower methane adsorption

capacity.

4.4 Comprehensive analysis of physicochemical
properties of coal effect on methane adsorption

The reason for the fixed carbon content increases with the

coal rank is: In the process of coal metamorphism, the

carbonization trend is obviously shown, that is, the low

rank contains five kinds of elements of C, H, O, N, S,

While, the anthracite basically only contain one element of

carbon. The reason is that: the chemical components and

the structure of coal changes in the process of coal meta-

morphic, the performance for this is the rot colonization

material constantly aggregate, hydrophilic oxygen group

such as hydroxyl and carboxyl lost large of water, from low

Fig. 13 Variation of O content with vitrinite reflectance Ro;max. (Data

size:Chinese (Chang et al. 2006; Qin et al. 2007; Chang et al. 2008;

Lin et al. 2013)-145, English(Allardice and Evans 1971; Gan et al.

1972; Joubert et al. 1973, 1974; Nandi and Walker 1975; Nelson et al.

1980; Yang and Saunders 1985; Reucroft and Patel 1986; Banerjee

1988; Friesen and Mikula 1988; DeGance et al. 1993; Chaback et al.

1996; Wang and Takarada 2003; Fitzgerald et al. 2005; Dai et al.

2006; Bae and Bhatia 2006; Siemons et al. 2007; Majewska et al.

2009; Pone et al. 2009; Radliński et al. 2009; Battistutta et al. 2010;

Gensterblum et al. 2010; He et al. 2010; Kim et al. 2011; Hao et al.

2013)-254)
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metamorphic degree of coal with variety functional

groups structure, to anthracite containing condensation

aromatic nuclear of structure, hydrophilic functional

groups constantly reduced, carbon content constantly

increases, resulting in the weaken of hydrophilic con-

stantly and the adsorption of methane constantly

enhanced. At the low metamorphic degree stage, the

oxygen and hydrogen content in vitrinite are all greater

than in inertinite,which means that the oxygen-containing

groups of hydroxyl and carboxyl in vitrinite at this stage

is higher, resulting in the higher hydrophilia and weak-

ened gas adsorption capacity. Thus, at low metamorphic

degree stage, the gas adsorption capacity of vitrinite is

weaker than that of inertinite vitrinite, the reason is that

with the increase of coal rank, hydrophilic group in vit-

rinite fall off, and the gas adsorption capacity can be

strengthen.

5 Conclusions

Physicochemical properties of coal and the methane

adsorption capacity had a well-regulated change with

coal rank. Limit adsorption capacity expressed in adaf
decreases firstly and then increases with the increase of

coal rank, but Adsorption constant of b falling in the

range of 0.15–2.25 MP−1 present the opposite changing

law. Dry ash-free basis gas content of Qdaf increases

with increasing metamorphism of coal, and the gas

content of raw coal (Q)increases linearity with the coal

rank.

Fixed carbon, vitrinite, carbon element present the

positive interrelated relationship to maximum vitrinite

reflectance Ro;max, and Ro;max �Fcad, Ro;max �Vitrinite
exhibits power-decreasing type, Ro;max �Cdaf exhibits

Logarithm function type. The volatile, inherent moisture,

inertinite, oxygen content, hydrogen content present the

negative interrelated relationship to maximum vitrinite

reflectance Ro;max,and Ro;max �Vdaf exhibits power-de-

creasing type, Ro;max �Mad, Ro;max � Inertinite,
Ro;max �Odaf exhibit exponential function type, and

Ro;max �Hdaf exhibit Logarithm function type. Further-

more, we can derive fixed carbon and vitrinite present a

positive correlation with adsorption capacity of Q, and
Fcad �Q and Vitrinite�Q are Logarithm function,

while Cdaf �Q exhibits exponential function type.

Besides, volatile,vinherent moisture, inertinite, oxygen

content, hydrogen content of coal present a negative

correlation with adsorption capacity of Q, and Vdaf �Q
exhibits a power function type; Mad �Q, Inertinite�Q
and Odaf �Q exhibit Logarithm function type, while

Hdaf �Q is an exponential function.

The essence of the effect of coal rank on methane

adsorption capacity is the changing of Physicochemical

Properties of Coal.
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