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Abstract The kinetics of coke solution loss reaction with

and without sodium carbonate were investigated under the

reaction atmosphere of carbon dioxide. The variables of

gas flow rate and coke particle size were explored to

eliminate the external and internal diffusion, respectively.

Then, the improved method combining with the least

square and the genetic algorithm was proposed to solve the

homogeneous model and the shrinking core model. It was

found that the improved genetic algorithm method has

good stability by studying the fitness function at each

generation. In the homogeneous model, the activation

energy with and without sodium carbonate was 54.89 and

95.56 kJ/mol, respectively. And, the activation energy with

and without sodium carbonate in the shrinking core model

was 49.83 and 92.18 kJ/mol, respectively. Therefore, it

was concluded that the sodium carbonate has the catalytic

action. In addition, results showed that the estimated con-

versions were agreed well with the experimental ones,

which indicated that the calculated kinetic parameters were

valid and the proposed method was successfully developed.
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1 Introduction

Coke is extensively applied to metallurgy, and widely used

as raw materials in many fields such as calcium carbide,

foundry industry and chemical engineering (Manning and

Fruehan 2001; Wang et al. 2007; Gielen and Taylor 2009).

Therefore, coke plays an important role in many industries.

During the last three decades, there are increasing interests

in those factors that influence the gasification rate of coke

(Hijiriyama et al. 1983; Zamalloa and Utigard 1995;

Eatough et al. 2007; Grigore et al. 2008; Pusz et al. 2010;

Zhou et al. 2010). Further, the reaction between carbon in

coke and carbon dioxide is also gasification, and so-called

coke solution loss reaction (Wang et al. 2016), which is the

main reason leading to fragmentation and pulverization of

coke in the middle and lower part of blast furnace (Wang
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et al. 2017). Therefore, it is believed that the coke reac-

tivity is the core of above investigations. Because it might

clarify the quantitative relationship between chemistry

reaction rate and each physical factor, to provide a guiding

significance in reaction optimum conditions selection and

reactors design.

Some kinetic models (Miura and Silveston 1989; Belk-

bir et al. 2004; Nakagawa et al. 2004; Wang et al. 2009)

have been reported to study coke gasification reaction with

steam and CO2 in reactive temperature (1248–1323 K).

Zhang et al. (2006) investigated the procedure of anthracite

chars with steam and CO2 at 0.02–0.1 MPa and

1193–1323 K. They applied homogeneous model and

shrinking core model to verify experimental data. More-

over, it was proved that two models well described

experimental results. Therefore, the mentioned models are

often used for describing the kinetic behavior of coke

solution loss reaction.

Among above mentioned investigations, there is not any

material as a catalyst. Furthermore, it is a known fact that

addition of a range of alkali and alkaline earth metals on

the substance based on carbon could enhance the efficiency

of gasification. Ueda et al. (2011) studied the catalytic

effect of an alkaline earth metal compound on gasification

of bitumen coke in a fluidized bed reactor. Furimsky et al.

(1986) used a lignite ash containing Ca, Mg, Ba, Fe, and Ni

oxides as catalyst with both delayed and fluid cokes from

Alberta oil sands in a fixed bed reactor. Watkinson et al.

(1989) studied the addition of potassium carbonate to oil

sand coke in a fluidized bed. However, the reactant in those

investigations is the coke based on petroleum. Kinetic

behaviors of coke solution loss reaction using alkali and

alkaline earth metals as a catalyst is rarely published.

For solving above kinetic models, the accuracy of the

estimated result is dependent on the calculated method.

The common and reliable method is regression analysis on

the basis of statistics theory, such as least square method

(LS) (Axelsso 1980, 1987). However, it is difficult to solve

the aforementioned models because the kinetics equations

are nonlinear in most cases. Therefore, some intelligent

algorithm for example the genetic algorithm (GA) (Chan

et al. 2009; Delavar et al. 2010), simulated annealing, and

particle swarm optimization was developed to calculate the

parameters of the kinetic model in recent years. Among

those methods, the GA has been widely applied to solve the

problem (Mitra and Mitra 2012). In addition, fitting of

nonlinear models relies on non-trivial assumptions. And,

users are required to carefully ensure and validate the entire

modeling. Moreover, parameter estimation is carried out

using some variant of the least squares criterion involving

an iterative process. Thus, researchers need to have a clear

understanding of the model, its parameterization and data

considered, and knowledge of model diagnostics

procedures and so on (Baty et al. 2015). Therefore, the GA

toolbox in MATLAB was performed to obtain initial

kinetic parameters, which might deeply understand model,

parameterization and diagnostics procedures and so on. To

improve the computational accuracy, the least square

method was also used to re-estimate the parameters.

Based on above considerations, the reactive behavior of

the blast furnace coke under CO2 as reaction atmosphere

was investigated with and without sodium carbonate as a

catalyst in the temperature range of 1073–1623 K. Then,

two classical kinetic models were employed to describe the

kinetics of coke solution loss reaction. Furthermore,

kinetics parameters were estimated using the GA method

combined with LS.

2 Experimental and calculation method

2.1 Materials

The raw coke material was the blast furnace coke, which

came from Ma-steel Coking Plant. The catalyst was the

reagent grade ([99.8%) sodium carbonate (Na2CO3) from

Shanghai Hongguang Chemical Plant. A Cahn Thermax

700 thermogravimetric analyzer was used to conduct the

coke solution loss reaction experiments. The protective

atmosphere and the reactive atmosphere were provided

with a purity[99.999% nitrogen gas and a purity[99.99%

carbon dioxide, respectively, from Ma-steel Coking Plant.

2.2 Coke sample preparation

The raw coke material is the blast furnace coke, which

came from Ma-steel coking plant. Proximate analysis and

basic properties parameters are listed in Table 1.

Before the kinetic experiment, it is needed to eliminate

the influence of external and internal diffusion. Four dif-

ferent gas flows, 150, 140, 120 and 100 mL/min, were

carried out in experiments to remove the external diffusion.

And, coke samples were ground by a pestle and mortar and

sieved into four size ranges: 0.3–0.4, 0.2–0.3, 0.075–0.2

and\0.075 mm to eliminate the internal diffusion.

2.3 Adsorption of catalyst

In our work, the reaction temperature was quickly heated to

1173 K with the rate of 20 K/min. Sodium carbonate was

Table 1 Proximate analysis and basic properties parameters of coke

Mad Vdaf Ad St,d (%) MSI (%) SSI (%) PRI (%)

0.41 2.43 13.07 0.52 62.9 94.1 24.8
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decomposed into sodium oxide in 1017 K. At this time,

sodium oxide is a gas state, and partly raised with gas flow

to low temperature zone in the blast furnace. After that,

sodium oxide was cooled down and adsorbed on the sur-

face of coke. Adsorption metal oxide is a catalyst in the

process of coke solution loss reaction. Considering the

cycle enrichment of alkali metals in blast furnace, the salt

of Na2CO3 was selected as a catalyst, and added with the

quantity (0, 0.5, 1, 2 and 3% based on mass) to the sieved

coke particles. Then, a few droplets of water (1.0 ml) were

placed in those mixtures. At 373 K temperature, those

waters were evaporated.

2.4 Coke solution loss experiments

Coke solution loss experiments were implemented by using

a Cahn Thermax 700 thermogravimetric analyzer. A coke

sample (10 mg) was placed in a crucible of the furnace

under nitrogen gas and dried at 378 K for 1 h. Then, the

sample was heated up with the rate of 20 K/min. When the

desired temperature was reached, N2 was replaced by CO2.

And the reaction temperature was kept constant until no

evident weight loss was observed. Finally, the reaction

system was cooled under N2 flow to room temperature.

2.5 Calculation method

The least square combined with genetic algorithm (LS-GA)

was developed to estimate the kinetic parameters as

showed in Fig. 1. The initial kinetic parameters were cal-

culated by the GA method. Based on those initial values,

parameters were further optimized using the LS method.

The proposed LS-GA procedure worked through the fol-

lowing steps:

Step 1: Construct the objective function. The kinetics

parameters were established by optimization. The

objective function was described as

min w Kð Þ ¼
XP

m¼1

x�j tm;Kð Þ � xj tmð Þ
h i" #2

ð1Þ

where K is the kinetics parameter, P the experimental

point number, tm the reactive time, x�j tm;Kð Þ described

the calculated values of the experimental molar fraction,

xj tmð Þ described the carbon conversion, w is the value of

the objective function.

Step 2: Population size. The population size was set to

20.

Step 3: Initial population. The population type was set to

be a double vector, and a random initial population with

a uniform distribution was created using the uniform

function.

Step 4: Estimating the objective function value. Based

on the experimental data, the objective function value

was calculated.

Step 5: Fitness scaling operator. The rank function was

used for the fitness scaling operator, which could scale

the raw scores based on the rank of each individual. The

fitness scaling operator converted raw fitness scores to

values in a range that was suitable for the selection

function.

Step 6: Select operator. The selection operator chose

parents for the next generation based on their scaled

values from the fitness scaling operator. The stochastic

uniform was applied for the selection operator.

Step 7: Reproduction operator. The reproduction oper-

ator determined how the genetic algorithm creates

children at each new generation, where the elite count

was set to 2, and crossover fraction was equal to 0.8. The

elite count specified the number of individuals, which

were guaranteed to survive to the next generation. The

crossover fraction specified the fraction of the next

generation.

Step 8: Crossover operator. The crossover operator

combined two individuals, or parents, to form a new

Fig. 1 Flow chart of the LS-GA
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individual, or child, for the next generation. The

scattered function was used as a crossover function.

The scattered function created a random binary vector.

Step 9: Mutation operator. The mutation operator made

small random changes in the individuals in the popula-

tion, which provided genetic diversity and could the GA

to search a broader space (Beasley et al. 1993; Johnson

and Rahmat-Samii 1997). The Gaussian function was

introduced for the mutation operator. The average

amount of mutation is controlled by scale and shrink.

In this case, scale and shrink were both set as 1.0.

Step 10: Migration operator. The migration operator was

the movement of individuals if population size was set to

be a vector of length greater than 1. The best individuals

often replace the worst individuals. The direction

function was used to control the migration.

Step 11: Stopping criteria. The stopping criteria operator

determined what caused the algorithm to terminate. The

specified the maximum number of iterations was equal

to be 100. Function tolerance, tall generations and stall

time limit were set as 0.000001, 50, and 20, respectively.

Step 12: Estimating the kinetic parameters. The kinetic

parameters obtained by GA were set as the initial kinetic

parameters. Then, the kinetic parameters were obtained

by the LS method that was solved using the lsqnonlin

function in Matlab. If the objective function value was

greater than 10-8, the initial kinetic parameters were

afresh set as the results obtained from the LS method.

Then, the NLS method was newly carried out until the

objective function value was less than 10-8.

3 Results and discussion

3.1 Elimination of coke samples diffusion

3.1.1 Influence of gas flow rate

Preliminary experiments were performed to study the

effect of external diffusion by varying the gas flow rate

with the other variables constant, including 100, 120, 140

and 150 mL/min. And the load of a catalyst and the particle

size of coke samples used in this experiment were

0.309 mg and 0.075–0.2 mm, respectively. As showed in

Fig. 2a, the conversion of carbon was increased with the

increasing gas flow rate. And as it can be seen in Fig. 2b,

the conversion of carbon with 120, 140 and 150 mL/min at

12000 s was respectively 73.38%, 71.13% and 69.85%,

which was indicated that there was no obvious change

among those conversions when the gas flow rate was equal

to or greater than 120 mL/min. Therefore, the gas flow rate

with 150 mL/min was employed in our experiment.

3.1.2 Effect of coke particle size on reaction conversion

The coke was sieved into four size groups: (I)\0.075 mm, (II)

0.075–0.200 mm, (III) 0.200–0.300 mm, and (IV)

0.300–0.400 mm. Experiments were carried out at the gas

flow rate with 150 mL/min. The results of carbon conversion

with different particle size were presented in Fig. 3a, b. As

shown in Fig. 3a, the conversion of carbon was increased with

decreasing coke particle size. However, when reaction time

was greater than 12,050 s, the conversion of size (II) was

greater than the one of (I) in Fig. 2b.

Furthermore, it was reported that the fine coke particle

size range from 0.038 to 0.053 mm was adopted in kinetics

investigation (Semagina et al. 2011). Therefore, the coke

particle size of (I) was implemented in our work.

3.1.3 Effect of loaded catalyst quantity

In addition, the effect of catalytic salt on the carbon con-

version rate was shown in Fig. 4. It was found from Fig. 4

that carbon conversion rates were nearly equal to zero in

Fig. 2 Variation of carbon conversion with time at different gas flow

rate in a raw coke samples and b samples adsorbed Na2CO3
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the range of temperature from 1073 to 1273 K. The reasons

for the phenomenon was that trace amounts of secondary

volatile ran away from a reactive system. When the tem-

perature was greater than 1273 K, the coke solution loss

reaction initiated, which resulted in the carbon conversion

rate obviously increasing. It was also noticed from Fig. 4

that the carbon conversion rate was raised by increasing

catalytic salt loaded quantity. Because the maximum of

carbon conversion rate was under condition of 3% salt

loaded quantity, the coke with 3% catalytic salt loaded

quantity was selected as example to study the kinetics of

coke solution loss reaction.

3.2 Kinetic modeling

3.2.1 Kinetic model

Generally, a kinetic expression for the reaction rate is

written as Eq. (2)

dx

dt
¼ k Tð Þf xð Þ ð2Þ

where k(T) is reaction rate constant, T is temperature, f(x)

describes the changes in physical or chemical properties of

coke during the reaction processes. In addition, the reaction

rate constant can be expressed by the Arrhenius equation:

k Tð Þ ¼ Ae�
E
RT ð3Þ

where A and E are the pre-exponential factor and activation

energy, respectively.

In our work, the homogeneous model and shrinking core

model were adopted to investigate the coke solution loss

reaction, respectively. The homogeneous model (Ishida

and Wen 1971) assumes that reaction takes place

throughout the whole volume of the coke particle, and

reaction surface area linearly decreases with conversion, as

described in Eq. (4).

dx

dt
¼ k 1 � xð Þ ð4Þ

The shrinking core model (Manning and Fruehan 2001)

assumes that the reaction occurs at an external surface of

the coke particle, and gradually moves inside, leaving an

ash layer behind. The space leaving inside of particle

constitutes the porous network. The model is described as:

dx

dt
¼ k 1 � xð Þ2=3 ð5Þ

To satisfy the need of LS method, above two equations

were modified as follows:

� ln 1 � xð Þ ¼ kt ð6Þ

3 1 � 1 � xð Þ1=3
h i

¼ kt ð7Þ

3.2.2 Stability of calculation method

The GA method was introduced in the above method.

Because there is the random search procedure in a GA

Fig. 3 Variation of carbon conversion with time at different particle

size in a raw coke samples and b samples adsorbed Na2CO3

Fig. 4 The effect of catalytic salt on the carbon conversion rate
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method, the method stability based on GA algorithm is

poor. Thus, the stability of improved GA method is

important in application. Therefore, the stability of the

above mentioned method was investigated, as showed in

Fig. 5.

The best and the mean values of the fitness function at

each generation were shown in Fig. 5, respectively. The

points at the bottom of the plot denoted the best fitness

values, while the points above them denoted the averages

of the fitness values in each generation. The best and the

mean values in the current generation were also numeri-

cally displayed at the top of Fig. 5, respectively. It was

concluded that the best fitness value was improved rapidly

in 15th generations before, when the individuals were far

from the optimum. The best fitness value improved more

slowly to near 1.2866 9 10-6 after the 30th generation,

whose populations were closer to the steady point. Hence,

the improved GA method in our work has good stability.

3.2.3 Kinetic parameters

Based on the above improved method, the relationships

between carbon conversion and reaction time using the

Fig. 5 The best and mean values of the fitness function at each

generation

Fig. 6 Homogeneous model for a raw coke samples and b samples

adsorbed Na2CO3 at different temperatures
Fig. 7 Shrinking core model for a raw coke samples and b samples

adsorbed Na2CO3 at different temperatures
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homogeneous model and the shrinking core model were

estimated in experiment with and without the catalyst.

Then, the relationships using the estimated and experi-

mental values were exhibited in Figs. 6 and 7, respectively.

The scattered symbols expressed the experimental data.

And, the lines were calculated values that were estimated

with the LS-GS method. Obviously, both of them agree

very well, indicating that calculated values are acceptable.

The relation of reaction rate constant and temperature

was showed in Fig. 8. It was seen from Fig. 8 that the data

from kinetic model was agreed with the experimental one,

indicating that estimated values were available. Then,

kinetic parameters were calculated by using Arrhenius

Law, and listed in Table 2. It was found that activation

energy with Na2CO3 as a catalyst was lower than the one

without Na2CO3 in both kinetic models. Therefore, it was

suggested that Na2CO3 has a catalytic action.

Moreover, the kinetic model was verified by comparing

the estimated data with the experimental ones, as shown in

Fig. 8 Arrhenius plots for a the homogeneous model and b the

shrinking core model during gasification in CO2 at different

temperatures

Table 2 Kinetic parameters of coke samples for the homogeneous model and the shrinking core model

Sample Activation energy E (kJ/mol) Pre-exponential A (s-1)

Homogeneous Shrinking core Homogeneous Shrinking core

Raw coke samples 95.56 92.18 0.8548 0.5656

Samples adsorbed Na2CO3 54.89 48.83 0.0230 0.0108

Fig. 9 Comparison between a raw coke samples and b samples

adsorbed Na2CO3 experimental data and those predicted by the

models
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Fig. 9. From Fig. 9, it can be seen that both homogeneous

model and shrinking core model give a good fit to exper-

imental data. Those results indicated that the estimated

kinetic parameters are valid.

4 Conclusions

The kinetics of coke solution loss reaction with and without

sodium carbonate were investigated with CO2 as a reaction

atmosphere using the thermogravimetric analyzer. In the

primary experiment, two variables (gas flow rate and coke

particle size) were studied. As the results showed, 120 mL/

min is sufficient to avoid the external mass diffusion, and

the internal diffusion is negligible when the particle size is

lower than 0.075 mm. The improved method combined the

least square with the genetic algorithm was implemented to

solve the homogeneous model and the shrinking core

model. By investigating the fitness function at each gen-

eration, it was found that the improved genetic algorithm

method has good stability to solve two models. Based on

estimated reaction rate constant, kinetic parameters were

obtained using the Arrhenius Law. In the homogeneous

model, the activation energy with and without sodium

carbonate was 54.89 and 95.56 kJ/mol, respectively. And,

the activation energy with and without sodium carbonate in

the shrinking core model was 49.83 and 92.18 kJ/mol,

respectively. Therefore, it was obvious that Na2CO3 has a

catalytic action during coke solution loss reaction. The

estimated carbon conversions obtained from two models

with the LS-GA method agreed well with experimental

datum, indicating that the calculated kinetic parameters

were valid and the method combined the least square with

the genetic algorithm was successfully developed.
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