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Abstract The monitoring of highwall slopes at open-pit mines is an important task to ensure safe mining. For this reason,

several techniques such as total station, radar, terrestrial Light Detection and Ranging (LIDAR) can be employed for

surface measurement. The objective of this study is to investigate mesh algorithms, which can be used to interpolate 3D

models of pit walls. Experiments were carried out at Coc Sau open-pit mine at Quang Ninh province of Vietnam, and at

experimental mine of Akademia Górniczo-Hutnicza University of Science and Technology in Cracow, Poland. First, 3D

point cloud data for the study area was acquired by using terrestrial LIDAR, then was used to generate mesh surfaces using

three algorithms—Delaunay 2.5D XY Plane, Delaunay 2.5D Best Fitting Plane, and Mesh from Points. After that, the

results were rectified and optimized. Subsequently, the optimized meshes were used for generation of non-uniform rational

basis spline (NURBS) surfaces. Then, the NURBS surface accuracy was assessed. The results showed that the average

distance between surface and point cloud was within range of 5.6–5.8 mm with deviation of 6.2–6.8 mm, depending on the

used mesh. Additionally, the quality of surfaces depends on the quality of input data set and the algorithm used to generate

mesh network, and the accuracy of computed NURBS surfaces fitting into pointset was 4–5 times lower than that of

optimized mesh fitting. However, the accuracy of the final product allows determining displacements on the level of

centimeters.
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1 Introduction

The control of rock slope movements in open-pit mines is

important for the secure work and the continuity of pro-

duction (Nunoo et al. 2016). Any uncontrolled rockslide or

landslide may have several impacts on the safety and

economics of an open-pit operation. Thus, the monitoring

of pit walls at open-pit mines is a crucial task to manage

the stability of them (Nghia and Maciaszek 2010).

There are several slope monitoring methods divided into

three categories: (1) visual inspection, (2) surface mea-

surement and (3) subsurface measurement (Nunoo et al.

2016). While for visual inspection, mine operations per-

sonnel working in the pit watch for any potential unsafe pit

wall behavior (Nunoo et al. 2016), surface and subsurface

measurements use complex technologies or special instru-

mentation in performance. For surface measurement, sur-

veying devices like global positioning system (GPS)

receivers (Lipecki 1999; Younger 2001), total stations and

prisms (Lazzarini 1977) are widely employed with high

accuracy. However, these techniques gathers points of
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objects only, therefore, these are time consuming and not

cost-effective methods (Abellán et al. 2009).

Recent advances in the field of geospatial technologies

has provided several new monitoring techniques for the

detection of rock slope instabilities across a wide range of

spatial and temporal scales such as Interferometry Syn-

thetic Aperture Radar (InSAR) (Amelung et al. 1999;

Krawczyk et al. 2012), space-born Light Detection and

Ranging (LIDAR), and terrestrial LIDAR. All three tech-

niques can measure whole visible surface of objects, but

the first two techniques allow only to collect data for fixed

periods when satellites or planes has flown above, whereas

the terrestrial LIDAR is a rapid method and it can be used

to measure large areas (Bitelli et al. 2004; Ferraz et al.

2016; Tang et al. 2014). In addition, terrestrial LIDAR can

replace tacheometric measurements in different tasks, such

as: structures’ health monitoring (Park et al. 2007), rivers

(Williams et al. 2014) and forest measurements (Simonse

et al. 2003), and creating geological documentation

(Buckley et al. 2008). Therefore, the terrestrial LIDAR has

been proposed for topographic mapping in open-pit mines

(Barbarella and Fiani 2013; Jaboyedoff et al. 2012). The

main advantage of the terrestrial LIDAR is that the accu-

racy of the derived products is very high (Boehler et al.

2003). In addition, temporal resolution can be decided by

surveyors to measure all visible surface of the object.

However, the accuracy assessment of topographic surfaces

in open-pit mines derived from the terrestrial LIDAR is

still rare. Moreover, the terrestrial LIDAR has not been

studied yet as extensively as other methods like GPS or

total station measurements.

There are several different methods for converting mea-

sured point clouds into a 3D polygonal (Cignoni et al. 1998;

Remondino 2003b), including methods for generating

irregular network, rectangular grid and the contour overlap

(Yao et al. 2014). The reconstruction of precise surfaces from

unorganized point clouds derived from laser scanner data is a

very hard problem(Remondino 2003b). In addition, there is a

lack of comparative studies of different interpolation algo-

rithms for generating topographic surface at open-pit coal

mines. Surface reconstruction by mesh algorithms allows to

create continuous representation of the object based on dis-

crete data. In other words, the information about object

structure is known (Bucksch and Lindenbergh 2008). Open-

pit mines’ areas are usually full of bed rocks, flat stones and

sharp edges. Owing to that, it is easy and accurate to present

them as a mesh surface. Nevertheless, using a non-uniform

rational basis spline (NURBS) surface pretend to be appro-

priate in this case due to the possibility of the assumption of

the pit mine area as a continuous surface.

This work addressed this issue by comparing three dif-

ferent algorithms based on the Delaunay triangulation,

namely Delaunay 2.5D XY Plane, Delaunay 2.5D Best

Fitting Plane, and Mesh from Points for the reconstruction of

surfaces from terrestrial LIDAAR data. It also presents the

application of the polygonal mesh to determine displace-

ments. The mesh surface was generated from the point cloud

data. It can be used as a reference object for further mea-

surement series as well as a basis for generation of a NURBS

surface. Moreover, quality of created surfaces, mesh quality

improvement approaches and possible sources of errors were

discussed in article. Additionally, the application of NURBS

surfaces generated from mesh networks in modelling the

noisy point clouds was present, and their accuracy were

assessed based on two independent point clouds.

2 Study area and data collection

The point clouds used for the research were obtained at the

Akademia Górniczo-Hutnicza (AGH) experimental mine

and at the Coc Sau open-pit mine. The AGH experimental

mine is a museum and a laboratory placed at the AGH

University of Science and Technology (AGH UST-https://

www.agh.edu.pl/en) in Cracow (Poland). It is unique

research and teaching place, presenting the complete

infrastructure needed in the underground coal exploitation.

For this area, 3D point cloud was obtained by using Leica

C10 (Leica Geosystems 2011). The main characteristic of

this terrestrial LIDAR instrument was summarized in

Table 1. The obtained point cloud after being merged and

cleaned by Leica Cyclone software was present in Fig. 1.

The density of the point cloud was around 2500 points per

0.01 m2 and the points were distributed uniformly.

Coc Sau open-pit mine, located in the Mong Duong

Ward, Cam Pha city, Quang Ninh province, Vietnam,

around 200 km to the east of Hanoi city, was selected as

second case study. Recently, the mine has been exploited at

a depth of - 200 m above sea level. The mine is using

modern technologies including drilling explosion, coal

excavation, transportation, mineral processing and sorting

to consumption (Khan 2017). For this area, 3D point cloud

for the topographic surface was scanned using GeoMax

Zoom300 LIDAR (Fig. 2), the main characteristic of this

terrestrial LIDAR instrument was summarized in Table 1.

In Coc Sau case study, the data was collected from one

station in local coordinate system. Owing to that, there was

no need to use control points. The point cloud was processed

and cleaned in XPAD program. According to the user guide,

the accuracy of the point cloud should be around 6 mm per

50 m (GeoMax AG 2015). The density of the obtained point

cloud was around 20 points per 0.01 m2. From the post-

processed point cloud, a small part presenting the highwall

slope was chosen (Fig. 3). Due to mine conditions, the point

cloud was obtained from far stations, slopes were scanned at

a sharp angle and the obtained data was noisy; therefore, this
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dataset was chosen to assess the practical application of the

tested models on the real-life with low quality data. This part

of the data set was used for all analyses and was called as

‘‘the original point cloud’’ (OPC).

3 Data analysis and results assessment

3.1 Data preparation

Before mesh generation, pre-processing operation must be

performed. Firstly, the data set should be sampled. After

that noise reduction, outliers excluding, and holes filling

should be carried out to remove errors. Next step of cre-

ating polygonal mesh surface is global topology determi-

nation. Then, the polygonal surface can be created. Post-

processing is a part of the model construction, when an

object surface is editing automatically or manually—cor-

rections are performed, mesh could be repaired, smoothed

or split into parts (Remondino 2003b).

3.2 Mesh generation

3.2.1 Background of the mesh algorithms

Mesh generation was based on Delaunay triangulation,

which was found in 1934 as a dual graph of Voronoi dia-

gram (Delaunay 1934). It is a common tool used in graphic

and 3D modeling applications to convert point cloud into

3D polygonal model (Fig. 4).

2.5D Triangulation is the process based on Delaunay

algorithm, which is used as a interpolation function. For set

of points P and real, unique elevation function f(x,y) at

Table 1 Parameters of the laser scanners used in the study (GeoMax AG 2015; Leica Geosystems 2011)

Item Leica C10 GeoMax Zoom300

Type Pulse-based Time-of-flight

Accuracy of length measurement 4 mm (up to 50 m) 6 mm/50 m

Range up to 350 m 300 m

Carrier wavelength 532 nm 905 nm

Beam divergence 0.24 mrad 0.37 mrad

Fig. 1 Point cloud of the test field wall from AGH experimental mine

Fig. 2 A photo of the Coc Sau open-pit coal mine (the photo was

taken by Michał M. Buczek on November 7, 2016)

Fig. 3 The point cloud of the chosen highwall from Coc Sau open-pit

mine
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each point p(x,y) [ P the linear interpolating function F is

created. F(p) is weighted average of the elevation of tri-

angle’s vertices which contains p (Remondino 2003a).

In Micro Station V8i triangulation method uses hori-

zontal plane for data computation and determination of

connections between network nodes.

Delaunay 2.5D XY Plane and Delaunay 2.5D Best Fit-

ting Plane are algorithms available in CloudCompare. First

algorithm is based on the point cloud projection on the 2D

XY plane. After projection 2D points are triangulated and

new-build mesh structure is used to create 3D surface

(Girardeau-Montau 2018a). The difference of the second

one is that point cloud is projected on the best fitting plane

not to XY plane. In this process, least square method is

used (Girardeau-Montau 2018b).

3.2.2 Case study in AGH experimental mine

In the AGH experimental mine a part of the longwall face

was chosen. The wall’s surface is almost a planar with

shallow pockets. A part of the point cloud with visible

pockets was illustrated in Fig. 1. The distance between

LIDAR station and the longwall was less than 4 m. The

obtained pointset was chosen to evaluate the accuracy of

fitted mesh networks and NURBS surfaces. This high-

quality point cloud was used to determine the accuracy of

the surface models. The meshes were generated using three

different algorithms available in MicroStation software and

CloudCompare software: (1) MicroStation’s Mesh from

Points—Global Z Direction—(AGH MS); (2) CloudCom-

pare’s Delaunay 2.5D (XY plane)—(AGH CC); (3)

CloudCompare’s Delaunay 2.5D (Best Fitting Plane)—

(AGH BF). These meshes were called ‘original mesh’.

After that, the results were rectified and optimized, and

called ‘optimized mesh’. The worklow for the AGH

experimental mine case study was illustrated in Fig. 5.

3.2.3 Case study in Coc Sau open-pit coal mine

Similar to AGH case study, the mesh networks were gen-

erated from the OPC using different algorithms available in

MicroStation software and CloudCompare software: (1)

Fig. 4 Voronoi diagram (left) and Delaunay triangulation (right) of the same set of points (Remondino 2003a)

Fig. 5 The AGH experimental mine case study workflow
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MicroStation’s Mesh from Points—Global Z Direction—

(MS mesh); (2) CloudCompare’s Delaunay 2.5D (XY

plane)—(CC mesh); (3) CloudCompare’s Delaunay 2.5D

(Best Fitting Plane)—(BF mesh). However, as mentioned

in Sect. 2, the OPC of Coc Sau was quite noisy, which

could influence the quality of meshes. Therefore, the

comparison with data not used to create networks could be

more accurate assessment. Additionally, in order to assess

the practical application of the tested models on the real-

life with low quality data, the second point cloud was

generated to simulate the process of displacements. To do

this a disturbance smaller than 10 cm was added into the

OPC. Using the propagation of uncertainty, authors com-

puted the maximal displacement of single point in 3D

around up to 173 mm (approximate to 100
ffiffiffi

3
p

mm). The

matrix of disturbances was generated with values from the

range between - 0.1 m and 0.1 m with normal distribution

and the created point cloud is called ‘‘the disturbed point

cloud’’ (DPC). The worklow for the Coc Sau open-pit mine

case study was illustrated in Fig. 6.

3.3 NURBS surface generation

Generated meshes may have errors such as intersections,

wrong normal, flipped triangles. Therefore, the mesh rec-

tification and optimization are necessary before any further

usage. Then, the rectified mesh was used to generated

NURBS surfaces (Krishnamurthy and Levoy 1996), which

is a mathematical model for generating and representing

curves and surfaces (Domingo et al. 1995).

The NURBS surface approximates the input mesh net-

work and a decrease of accuracy is inevitable. On the other

hand, the shape of the mesh network depends on the

pointset and their errors. An example is present in Fig. 7.

The pointset (blue color) with local irregularities was

modeled with a mesh network and a NURBS surface. For

both models, the disturbed place influences the models’

plot. The deformation was not as big as it was in the

pointset. If the pointset has random irregularities, the

replacing it with models may reduce its noise.

The shape of NURBS surface is determined by its order,

a set of weighted control points, and a knot vector. It can be

built from numerous patches (black lines in the Fig. 7). The

surface patch is defined by the mathematical formulas:

interpolated (1) and approximated (2):

Sij t; uð Þ ¼
X

n�4

i¼0

X

r�4

j¼0

di;jN
3
i tð ÞN3

j uð Þ ð1Þ

X

r

j¼0

pj �
X

n�4

i¼0

X

r�4

j¼0

di;jN
3
i tð ÞN3

j uð Þ
" #2

! min ð2Þ

where:t ¼ t0; . . .; tnf g; u ¼ u0; . . .; urf g: function knots,

di;j: control points, Ni;Nj: basis functions, n, r: number of

control pointsComputer program GeoMagic Design X was

used to compute the NURBS surface from optimized

meshes.

3.4 Accuracy assessment

To assess the accuracy of the results, three parameters were

used. The first one, the maximal distance, is the distance

between the furthest point from the point cloud and the

surface. The second one, the average distance, is the mean

Fig. 6 The Coc Sau open-pit mine case study workflow
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distance between all points from the point cloud and the

surface. The last one is the standard deviation.

The accuracy was assessed from the distance statistics

for combinations of point cloud—mesh and mesh—mesh.

The statistics were calculated for the pairs as follows: (1)

original mesh network—original point cloud; (2) optimized

mesh network—original point cloud; (3) original mesh

network—optimized mesh network; (4) original mesh

network—disturbed point cloud; (5) optimized mesh net-

work—disturbed point cloud.

The same statistics were used to assess the NURBS

surface. The distances between the point sets and the

NURBS surfaces were computed. The point cloud was also

divided into few ranges according to distance to the surface

and distance maps were created.

4 Results and discussions

4.1 Mesh networks

By using the method mentioned in Sect. 3.2 the meshes for

AGH and Coc Sau study case were generated. The accu-

racy of fitting all mesh networks into point cloud was

present in Tables 2 and 3. CloudCompare software could

have a problem with generated original meshes, as a result

all the statistical parameters were equally 0.

For each optimized mesh network in AGH case study,

the average distance was lower than 2 mm, and the devi-

ation lower than 7 mm. Those results are similar or even

smaller than the accuracy of the single measurement of the

Leica C10 laser scanner, which are 4 mm for position and

6 mm for distance (Leica Geosystems 2011). Thus, the

mesh optimization process has preserved the accuracy

within the accuracy of the point cloud.

For Coc Sau open-pit mine, the results showed that

Mesh from Points algorithm created higher quality mesh

network than the other ones. Rectifying tools from Auto-

desk Netfabb (Repair) and GeoMagic Design X (Mesh

Doctor) have not found any errors, holes, and discontinu-

ities inside the MS mesh, in contrast to the CC mesh and

BF mesh. The Best Fitting Plane algorithm created net-

works with 10 times more triangles than the XY plane

Fig. 7 Irregular part of point cloud (blue) modeled with the mesh

network (red) and the NURBS surface patches (black) from two

perspectives

Table 2 Deviation of original point cloud and the AGH meshes

Type AGH CC AGH BF AGH MS

Original Optimized Original Optimized Original Optimized

Max. distance (mm) 0.0 131.8 0.0 131.8 25.8 139.2

Average distance (mm) 0.0 1.5 0.0 1.0 0.0 1.1

Deviation (mm) 0.0 6.6 0.0 5.2 0.3 5.4

Table 3 Comparison of original point cloud to the Coc Sau meshes

Type CC mesh BF mesh MS mesh

Original Optimized Original Optimized Original Optimized

Max. distance (mm) 0.0 307.1 0.0 376.5 372.8 372.8

Average distance (mm) 0.0 8.2 0.0 7.3 20.0 30.0

Deviation (mm) 0.0 41.2 0.0 39.2 62.3 74.9
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algorithm. It was caused by the irregular distribution of the

points in the point (Fig. 8).

Analyzing the BF mesh, it can be notice that its structure

depends on the distribution of points in the point cloud, and

the CC mesh better present the real shape of the scanned

slope. However, both mesh networks required a rectifica-

tion and all the errors were removed in the iteration

process.

In the next step, the mesh networks were optimized. As

a result, the new meshes were created with regular triangles

of the similar size. This process also lowered the density of

triangles about 3–4 times. Figure 9 illustrated the same part

of the BF mesh before and after the optimization. As can be

seen, the surface was smooth, and the characteristic lines

were still visible. The accuracy of fitting all mesh networks

into point cloud were present in the Table 3. There was no

similar correlation to the one for the AGH test site present

in Table 2. However, it is worth notice that after opti-

mization CC mesh and BF mesh were quite similar. The

average distance for optimized MS mesh was 4 times

bigger comparing to that of optimized BF mesh.

4.2 Accuracy assessment of the optimized meshes

To assess the accuracy of the optimized meshes in com-

parison to the original meshes, the same three parameters

were used. Table 4 showed the results of meshes compar-

ison before and after optimization. The MS mesh did not

have any errors to repair, but still there was a need to

recreate triangles to have similar size and similar density in

the whole network. The average distance for the

CloudCompare’s methods was under 1 mm, while for the

MicroStation it was dozens of time bigger. Analyzing

Fig. 8 A part of highwall at Coc Sau modeled by two algorithms: CC mesh (left) and BF mesh (right)

Fig. 9 Comparison of the chosen part of the mesh CS-BF before (left) and after (right) optimization process
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deviation values, the original and optimized CC mesh can

be assumed to be the best fitted mesh.

As can be seen in Table 4, the average distances

between original and optimized meshes are equal to

0.1 mm ± 2.9 mm for CC mesh, and to 0.3 mm ± 8.2

mm for BF mesh. The process of optimizing mesh network

decreased the precision of fitting surface into points. The

precision loss might depend on the shape of input mesh

network, as well as the dispersion of the input pointset.

Additionally, all meshes had great values of maximal dis-

tance. This could be caused by holes and single outlier

points. Figure 10 showed the distance map for the BF mesh

before and after optimization. It showed that the triangles

generated for the holes indicated by red color had bigger

distances.

4.3 Accuracy assessment based on DPC

Summary of the accuracy assessment for the new point

cloud, which was not correlated to generated meshes, was

shown in Table 5. Once again, all parameters for MS mesh

were few times bigger than the other meshes. For CC mesh

and BF mesh, average distance was lower than 1 cm, and

after optimizing it was lower than 2 cm. However, the

deviation was about 3–4 times bigger than the average

distance.

It can be seen that the maximum distances were greater

than the noise value (173 mm) added to the OPC. The

average distance for all tested objects was smaller than

43.3 mm, that is � of the maximum displacement error.

The standard deviation in all cases was lower than

86.6 mm, that is � of the maximum error. Thus, the pre-

cision was on the level of 2P = 95%.

4.4 NURBS surfaces

The optimized mesh networks were used to generate

NURBS surfaces. Figure 11 depicts the part of the AGH

MS mesh and the corresponding part of the NURBS sur-

face. The accuracy of the surface was shown in Table 6. It

can be seen that the average distance was 4–5 times bigger

than that of the mesh networks. The values were closed to

the laser scanner accuracy. Thus, the final surface may be

used as a model of the point cloud on the known level of

accuracy.

In this case, the test field is quite flat. Therefore, the

model of a planar surface was fitted into the pointset. The

result showed that the average distance was about 5 times

bigger than NURBS models. It might be caused by the

noise as well as the shallow pockets on the wall. It proves

that simple geometric objects cannot be used to model a

noisy point cloud with high accuracy, even in simple cases.

Table 4 Differences between original and optimized Coc Sau

meshes

Type CC mesh BF mesh MS mesh

Max. distance (mm) 221.2 217.6 215.2

Average distance (mm) 0.3 0.1 5.5

Deviation (mm) 8.2 2.9 33.8

Fig. 10 Deviation between original mesh BF and optimized mesh BF

Table 5 Deviation of disturbed point cloud to the Coc Sau meshes

Type CC Mesh BF Mesh MS Mesh

Original Optimized Original Optimized Original Optimized

Max. distance (mm) 217.6 217.1 221.2 307.4 372.8 304.4

Average distance (mm) 8.3 14.7 5.5 19.8 24.4 33.5

Deviation (mm) 41.7 54.6 34.6 62.6 68.5 78.2
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The same approach was applied on the optimized mesh

networks of Coc Sau mine. The rectangular grid with size

of 2 m9 2.5 m was generated from the spline curves. The

spline curves could not have discontinuities and loops. The

joined splines created the wireframe build of quadrangles.

Each rectangular of the wireframe was used to compute

one patch of the NURBS surface using Legendary

Boundary Fit tool. The grid network (wireframe) and the

NURBS surface was shown in Fig. 12.

The average distance was computed for each NURBS

surface, and the results were presented in Table 7. Same as

in AGH test field, the values were 4–5 times bigger than

accuracy of the optimized mesh networks. The quality of

MS mesh was the worse, what strongly influenced the

NURBS accuracy. The point cloud cannot be assumed as a

flat surface, therefore the free-form surface was computed

using RhingResurf’s Single Surface from Points. The

accuracy was worse than for the NURBS surfaces com-

puted with mesh networks. Therefore, the presented

approach gave better results than approach modeling the

raw point cloud. Additionally, the results proved that loss

of accuracy was within the accuracy of the input point

cloud.

The NURBS surfaces were generated from the opti-

mized meshes created from the OPC. For each surface, the

distance map for the DPC was created. The example

visualization for BF mesh was shown in Fig. 13. Five

groups of distances were classified: (1) distance smaller

than 43 mm; (2) distance from 44 mm to 86 mm; (3) dis-

tance from 87 mm to 131 mm; (4) distance from 132 to

Fig. 11 A part of the AGH MS mesh network (left) and the NURBS surface patch (right)

Table 6 Deviation of the planar and NURBS surfaces from the point cloud (AGH)

Type Planar surface AGH CC AGH BF AGH MS

Average distance (mm) 32.0 5.8 5.6 5.7

Deviation (mm) 27.1 6.6 6.2 6.4

Fig. 12 NURBS surface fitted into optimized mesh CC
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173 mm; (5) distance greater than 173 mm. Statistic of the

distances by groups were present in Tables 8, 9 and 10.

As shown in Tables 8, 9 and 10, the best NURBS sur-

face was generated from CC mesh. Almost 50% of all

points had distance smaller than � of the maximum dis-

tance error, and almost 75% of points had distance � of the

maximum error. Only single points were further than

maximum distance of disturbance. The result for the sur-

face from BF mesh was slightly worse.

On the other hand, the worst results were for the surface

from MS mesh. Only one-third of the points had distance

smaller than � of the maximum error. There was a big

group of points (almost 6%) laying further than maximum

error. The MicroStation generated the best raw mesh net-

work, without any errors. However, the quality of fitting

the original and the disturbed point set was the worst.

5 Conclusion

The processing of a raw point cloud is a resource-intensive

process. In addition, it cannot be applied directly in CAD

designing. Thus, one has to convert point cloud into sim-

pler 3D graphics objects like polygon meshes and surfaces.

The presented methods allowed creating digital models of

the real world object from the laser scanning data. The

networks optimization allowed creating smooth NURBS

surfaces. These tools can be especially applied with the

noisy datasets instead of simple geometrical objects.

The NURBS surface is continuous and smooth, and

allows generating a map of distances for all elements from

the point cloud. The laser scanning gives information about

all measured object, not only the chosen control points.

Thus, the presented approach may be an alternative to the

conventional methods, giving more complete and accurate

data about observed object.

Table 7 Deviation of the planar and NURBS surfaces from the point cloud of Coc Sau

Type Free-form surface (lowest smoothness) Free-form surface (highest smoothness) CC mesh BF mesh MS mesh

Average distance (mm) 48.1 56.7 32.5 32.1 53.4

Deviation (mm) 53.7 57.6 23.3 22.9 27.6

Fig. 13 BF NURBS surface covered by disturbed point cloud

(deviation between data sets is shown by colors: blue—group (1),

light blue—group (2), green—group (3), orange—group (4), red—

group (5)

Table 8 Statistics of comparison of the disturbed point cloud with

NURBS surface from BF mesh

Range I II III IV V

No. of points 3337 2422 1108 283 48

Percent of points 46.4 33.6 15.4 3.9 0.7

Table 9 Statistics of comparison of the disturbed point cloud with

NURBS surface from CC mesh

Range I II III IV V

No. of points 3519 2541 999 128 8

Percent of points 48.9 35.3 13.9 1.8 0.1

Table 10 Statistics of comparison of the disturbed point cloud with

NURBS surface from MS mesh

Range I II III IV V

No. of points 2315 2094 1494 832 408

Percent of points 32.41 29.32 20.92 11.65 5.71
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Applying the NURBS surface to approximate the point

cloud reduces the influence of noise and single, dispersed

points on the model’s shape. The NURBS fitting accuracy

into pointset is 4–5 times worse than optimized mesh. It is

the same for AGH and Coc Sau point clouds. Therefore,

the quality of the point cloud has not influenced the quality

of NURBS surface. It depends strongly on the quality of

the input mesh network.

Further work on this topic will focus on improving the

quality of the laser scans, to improve the meshes. They also

want to replace the second series with real observations of

displacement of the unknown value. The comparison with

classic methods would give the final answer if this method

is enough precise to determine deformations.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea
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