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Abstract The modeling of hydrocarbon selectivity and CO conversion of the Fischer–Tropsch synthesis over Fe–Ni/Al2O3

catalyst by using coupled artificial neural networks (ANN) and design of experiment (DOE) approaches were investigated.

The variable parameters for modeling consisted of the pressure range between 2 and 10 bar and the temperature range of

523–573 K. After training of data by ANN and determination of DOE points by central composite design (CCD), the

results were compiled together for producing simulated data used in the response surface method (RSM). The RSM was

used as an applied mathematics model to demonstrate the CO conversion and selectivity of hydrocarbons dependence on

the CO hydrogenation conditions. The results indicated that CO conversion and Cþ
5 selectivity increased with rising both

temperature and pressure. The methane selectivity showed upward trend as the temperature increased. It also increased by

decreasing pressure. Finally, the optimization of the catalytic process was carried out and conditions with maximum

desired product were obtained. A comparison of experimental values and RSM values show that the RSM equations are

able to predict the behavior of experimental data.

Keywords Fischer–Tropsch synthesis � Artificial neural network � Response surface method � CO conversion �
Hydrocarbon selectivity

1 Introduction

Due to dwindling petroleum reserves and the fluctuations

of the crude oil costs in the past few years, Fischer–

Tropsch synthesis (FTS) of syngas (CO and H2 mixtures)

has been considered as one of the foremost promising ways

to provide ultra-clean fuels at an economically possible

cost (Fu et al. 2013; Park et al. 2014). In FTS, which is a

kind of polymerization process, a large range of light gases

and distillates, including olefins, paraffins, and oxygenated

compounds are produced from synthesis gas in a catalytic

reaction (Parnian et al. 2014a, b; Liu et al. 2015). The

synthetic fuel made from Fischer–Tropsch synthesis is

characterized by a prime quality, significantly from the

view point of low pollution and a high cetane number

(Coronel-Garcı́a et al. 2015; Rodrı́guez-Fernández et al.

2009). The spectrum of the FTS product contains the

complex mixtures of linear and branched hydrocarbons

ranging from light alkenes to heavy waxes and oxygenated

products (Derevich et al. 2012; Todic et al. 2018; Najafa-

badi et al. 2016; van Helden et al. 2017; Khodakov et al.

2007). The most desired products are those with low

methane, low alcohol, high alkene/alkane ratio, and high

Cþ
5 content, which can be controlled by a modification of

the catalyst, the reactor and the reaction conditions (Fu
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et al. 2013). Due to the complex nature of the synthesis,

CO hydrogenation is faced with a basic problem of con-

trolling the product selectivity, and this is closely related to

the reaction mechanism and the behavior of reaction

intermediates (van Helden et al. 2017). The most common

catalysts for FTS are cobalt- or iron-based catalysts. Some

inorganic supports with high surface area, such as silica

and alumina, have been used to increase the active phase

dispersion (Khodakov et al. 2007; Ralston et al. 2017).

The use of Fe-based catalysts on FTS has been studied

by many investigators and was shown to possess satisfac-

tory performances within the production of liquid fuels and

waxes, particularly at high pressures. Most studies with

iron catalysts have targeted on reaction conversion, overall

rates of reaction and also on the product distribution over

some catalyst compositions. In many reported literatures,

the use of Ni as promoter not only has resulted in

increasing light hydrocarbons, but it also has caused heavy

hydrocarbons to decrease. The use of bimetallic is more

common compared to pure metal catalysts (Li et al. 2014).

Ishihara et al. (1987) exhibited the higher activity of

bimetallic Fe–Ni in comparison with Fe and Ni catalyst. In

a bid to achieve a better knowledge of the FTS, some

studies were conducted to understand the effects of oper-

ating conditions and different catalyst promoters on the

distribution of the FTS products. These studies have

demonstrated that iron-based catalysts produced paraffins,

particularly paraffins and olefins with low molecular

weight, depending on the reaction conditions used and the

kind of catalysts and reactors used (Farias et al. 2008;

Feyzi et al. 2015; Peña et al. 2018). Although there are a lot

of kinetic expressions for CO consumption in literature, the

one which focuses on the prediction of hydrocarbon

selectivity is hardly found. A challenge facing contempo-

rary FTS research is the development of techniques for

controlling process parameters, such as selectivity on liquid

products, productivity of the catalytic bed, the yield of

specific groups of hydrocarbons, etc. (Zhang et al. 2014;

Bashiri et al. 2018; Savost’yanov et al. 2018; Challiwala

et al. 2018). Articles about product selectivity are reported

qualitatively, while no article has been presented the model

which can predict what will happen with manipulating the

operating conditions (Sun et al. 2018; Yang et al. 2010;

Cheng et al. 2018).

In this work, the methodologies of design of experiment

(DOE) and ANN were used for selectivity modeling of the

hydrocarbon products and CO conversion. For selectivity

modeling by RSM, the simulation of DOE data is of

necessity; therefore ANN was used to produce these data

from the experimental data. The RSM was used to deter-

mine the exact optimum point for maximum Cþ
5 , minimum

CH4 distribution in products and maximum CO conversion

in the range of the temperature and the pressure. This

method can be applied to calculate the product selectivity

and CO conversion for any temperature and pressure within

the experimental condition ranges. Furthermore this

method is very helpful in different industries to increase

preferable products and also to decrease undesirable ones

by manipulating operating conditions.

2 Experimental

Mirzaei et al. (2012) attempted to obtain the experimental

data from fixed bed micro reactor. The catalyst was pre-

pared by co-precipitation method. The molar ratio of the

solution Fe/Ni was 40/60. The catalyst (Fe–Ni/Al2O3) was

dried at 383.15 K for 16 h and calcined at 873.15 K in

flowing air for 6 h at 5 8C/min the catalyst was used under

reaction conditions of Fischer–Tropsch synthesis. Experi-

mental data were obtained in 54 runs (Mirzaei et al. 2012).

3 Modeling method

With a variety of statistical tools available, the response

surface methodology is an efficient procedure in scientific

studies. This methodology is an assortment of statistical

techniques for the experimental design, the building of the

models, evaluating the consequences of factors, and

searching for the optimum conditions. Using the experi-

mental designs of response surface methodology makes it

attainable to use statistical tools for the modeling (Sho-

jaeimehr et al. 2014; Atashi and Rezaeian 2017).

In order to evaluate the behavior of product selectivity

and CO conversion with temperature and pressure and also

to determine the optimum range of operational condition

(pressure and temperature), in which selectivity of desired

products (Cþ
5 ) was maximized and undesired products

(CH4) was minimized, modeling was necessary. In the

reference experimental work (Mirzaei et al. 2012), CO

conversion or products selectivity were reported in limited

points such as T: 563, 573 K…, and P: 2, 3, 4 bar…hence,

it was impossible to determine the CO conversion or

products selectivity from unseen points. Therefore, mod-

eling becomes an asset in determining the exact CO con-

version or products selectivity for any temperature or

pressure such as 547 K or 3.5 bar, and also to demonstrate

the interaction between the parameters. Moreover, in order

to develop RSM models, it is necessary to collect experi-

mental data based on the DOE methods. In the reference

work (Mirzaei et al. 2012), experimental data were not

collected by DOE methods. To compensate for this draw-

back, ANNs in which original data were trained to produce
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appropriate input data for RSM were constructed. Then,

RSM was used for the selectivity and CO conversion

modeling.

3.1 Artificial neural networks and design

of experiment

From chemical engineering viewpoint, selectivity studies

play a significant role in achieving an optimum perfor-

mance of FTS process. As an effective tool for organization

of the experimental studies, designing of experiments

(DOE) is widely used in various science and technology

fields, as well as designing, optimizing and developing of

the catalyst (Atashi and Rezaeian 2017; Atashi et al. 2015).

In the last few years ANN based modeling helped to

develop empirical models and also achieve better statistical

analysis on experimental data (Nasr et al. 2013). ANN is a

colossal structure of interconnected networks consisting of

numerous individual elements called neurons, capable of

performing parallel computations for data processing.

Hence without having any prior knowledge about indi-

vidual functional relationships, ANN can handle multiple

independent and dependent variables simultaneously (Pir-

dashti et al. 2013).

In this work, three feed-forward networks with two

input–single output neuron structures were constructed.

The reactor operating conditions represented by the two

inputs are temperature (523–573 K) and pressure

(2–10 bar). The single output neuron of each of the three

networks, respectively represented the following quantities,

Network I: CO conversion, Network II: CH4 selectivity and

Network III: Cþ
5 selectivity. The number of neurons in the

hidden layer must be selected in order for the best fit of

experimental data to be achieved. Therefore for the first

network, the optimal number of hidden neurons was found

to be 8 whereas for both Networks II and III, the corre-

sponding numbers were 6.

3.2 Producing simulated data

In the range of operating condition, a Central Composite

Design (CCD) in software with two factors, pressure and

temperature, was employed to create DOE points. With the

use of the designed points from CCD and the trained net-

works, simulated outputs were generated in MATLAB. The

simulated data were used to obtain the CO conversion and

selectivity models by the adoption of response surface

methodology.

3.3 Response surface methodology

The CO conversion, CH4, and Cþ
5 selectivities data which

were generated from MATLAB by using the neural net-

works and DOE points from CCD (Table 1), were analyzed

using the RSM. The quadratic equation for the variable is

as follows:

Y ¼ b0 þ
X

biXi þ
X

biiX
2
i þ

X

i

X

j

bijXiXj ð1Þ

where Y is the predicted response; b0 is a constant; bi is the

first-order model coefficient; bii is the squared coefficient

for the factor i, and bij is the linear model coefficient for the

interaction between factors i and j. Xi is the value of the

main effect according to the following:

Xi ¼
xi � x�i
Dxi

ð2Þ

where Xi is the value of the ith independent variable, xi is

the un-coded value of the ith independent variable, xi
* is the

un-coded value of the ith independent variable at the center

point and, Dxi is the step change value.

All statistical analysis was done by DESIGN EXPERT

software. The purpose was to study the potential of ANN

simulated data in selectivity study and the capability of

RSM in prediction of CO conversions, CH4 and Cþ
5

selectivities, as well as optimum condition.

The following statistics were applied for selectivity

modeling of evaluating the quality of linear and nonlinear

regression.

The correlation coefficient,

R2 ¼ 1 �
Pn

i¼1 ðyi;obs � yi;modelÞ2

Pn
i¼1 ðyi;obs � y

�
Þ2

ð3Þ

Adjusted R2:

R2
adj ¼ 1 � ð1 � R2Þðn� 1Þ

n� m
ð4Þ

Mean Absolute Relative Residual, MARR:

MARR ¼
Xn

i

yi;obs � yi;model

yi;obs

����

����
1

n
� 100 ð5Þ

Relative Variance, Srel:

Srel ¼
Xn

i

yi;obs � yi;model

yi;obs

� �2
1

n� m

 !0:5

�100 ð6Þ

Root mean of standard deviation (RMSD):

RMSD ¼ 1

n

Xn

i

yi;obs � yi;model

� �2

 !2

ð7Þ
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where, yi,obs is experimental point, yi,model is calculated

point, n is the number of observations and, m is the number

of parameters.

F-regression statistic and F-lack of fit are as follows:

F � regression ¼ MSR

MSE
ð8Þ

F � lack of fit ¼ MSLF

MSPE
ð9Þ

where MSR, MSE, MSLF and MSPE are Mean Sum of

Regression, Mean Square Error, Mean Square Lack of Fit

and Mean Square Pure Error, respectively (Atashi and

Rezaeian 2017; Atashi et al. 2015).

4 Results and discussion

4.1 Artificial neural networks (ANN)

The temperature and pressure as inputs and CO conversion

and product selectivity as targets were presented to the

system. Estimation was made and the results were com-

pared with the corresponding desired value. In order to test

and validate the trained network, another two sets of data

were used and the outputs were obtained. The outputs of

the ANNs were compared with the experimental data for

the trained, test and validation data sets, respectively. The

results for the CO conversion, CH4, and Cþ
5 selectivity

networks are shown in Figs. 1, 2 and 3, respectively.

Figures 1, 2 and 3 are indicative of the relationship

between targets (experimental data) and outputs (ANN

data). As can be seen, the prediction of ANN was almost

fitted to the experimental value. The high values of R2

(0.96–0.99) were obtained, which indicated that the con-

structed neural networks can simulate the experimental

domains very well. The excellent estimation performances

obtained by using the trained networks demonstrated that

the trained networks were reliable, accurate and hence

could be employed further in the study.

4.2 Response surface methodology (RSM)

On the basis of RSM, the effect of temperature and pres-

sure on CO conversion, methane, and Cþ
5 selectivity was

studied and interactions between parameters were

achieved. The regression equations for each variable were

obtained after applying RSM, according to the temperature

and pressure. The significance of each coefficient was

determined by F and P values, and the statistically

important terms presented in Table 2. The second order of

regression models were reduced by omitting the terms

which are unimportant. The analysis of variance was

employed to test the significance of the ratio of mean

square due to regression and mean square due to residual

error. Generally, P values lower than 0.05 indicated that

the model was considered to be significant at the 95%

confidence level.

Table 2 presents the RSM models for CO conversion,

CH4, and Cþ
5 selectivity as well as their R2 values. The R2

values of the predicted model equations were quite high

(98%–99%) and these values indicated that the RSM was

sufficient enough in properly explaining the selectivity

modeling of products and CO conversion.

After determination of the RSM models, 3D surface and

contour plots were depicted to show the behavior trend of

the targets and then multi-component optimization was

Table 1 DOE points and simulated outputs

Run Temperature (K) Pressure (bar) CO conversion (%) CH4 selectivity (%) Cþ
5 Selectivity (%)

1 560.5 4 38.8019 16.6795 17.2248

2 523 6 32.4455 5.838 22.6338

3 535.5 8 50.0707 2.1357 29.281

4 548 10 66.7194 2.0618 37.4899

5 548 6 38.9618 4.7775 21.7747

6 560.5 8 70.0507 10.7472 34.5375

7 573 6 77.1163 13.1052 32.5396

8 548 6 38.9618 4.7775 21.7747

9 548 6 38.9618 4.7775 21.7747

10 548 6 38.9618 4.7775 21.7747

11 535.5 4 20.2642 3.9305 11.1371

12 548 2 18.1717 4.1837 7.3244

13 548 6 38.9618 4.7775 21.7747
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established, considering the interactions between parame-

ters in all the range of operating conditions to gain opti-

mum point where Cþ
5 and CO conversion were maximized

and CH4 was minimized.

Also, the RSM models in coded version can be used.

The larger regression coefficient for the independent

parameters demonstrated the stronger effect they possess

on the responses. The equations presented in Table 3

cannot be used instead of the equations of Table 2. In other

words, in order to calculate the CO conversion, CH4 or Cþ
5

selectivity at any point in the range of experimental con-

ditions, only the RSM models in Table 2 can be applied.

According to the statistical analysis, temperature and

pressure and their quadratic terms demonstrated the sta-

tistically significant effect on CO conversion. It is evident

from the RSM models in Table 3 that the pressure has the

greatest effect on CO conversion and Cþ
5 selectivity.

However, the effect of the temperature on CH4 selectivity

is stronger than the pressure. As the models indicate, the

interaction between temperature and pressure is dimmed

due to negligible impact on the model. The interaction

between temperature and pressure did not display any

statistical significance.

The contour plots (Figs. 4, 5, 6a) and 3D surface plots

(Figs. 4, 5, 6b) clearly showed the dependency of CO

conversions and product selectivity on temperature and

pressure. The red dots on the contour plots showed the

DOE points. Therefore, the ANN/RSM approach may be

useful for efficient demonstration of the behaviors.

Figure 4 shows the surface plots and the contour of the

CO conversion. Temperature and pressure exhibited an

increasing effect on CO conversion; however, in high

temperatures (543–573 K), this increasing effect of tem-

perature changed. As the surface and contour plot has

shown, by increasing both temperature and pressure the CO

conversion raised. The surface plot and regression

Fig. 1 Trained network for CO conversion data

Modeling of liquid hydrocarbon products using syngas 31

123



coefficients of the CO conversion equation in Table 3

indicated that pressure demonstrated a more significant

effect than temperature.

Figure 5 shows the variation of CH4 selectivity with

reaction conditions as contour and surface plots. CH4

selectivity generally demonstrates a decreasing trend with

an increase in reactor pressure at any temperature. How-

ever, in low to moderate temperatures (523–543 K), CH4

selectivity maintained a constant value and in moderate to

high temperatures (543–573 K) this value increased with

increase in temperature. Generally by decreasing temper-

ature and increasing pressure the minimum amount of CH4

selectivity occurs.

The change in Cþ
5 selectivity with operating conditions

(temperature and pressure) plotted as contour and surface

curves are shown in Fig. 6. According to the figure, Cþ
5

selectivity increased with the increase in pressure at any

temperature. From low to moderate temperature, the

selectivity remained approximately constant while an

obvious increasing trend occurred at moderate to high

temperatures. As can be seen, the maximum selectivity was

occurred by increasing pressure and temperature.

4.3 Optimization

Optimization plays an important role in statistical modeling

where in order to maximize desired products, detecting the

best operating condition is a requirement. In this research,

multi-component optimization was used and the optimum

point which facilitated the obtaining of desired results was

achieved. Temperature (around 558 K) and pressure

(around 8 bar) resulted in maximized CO conversion and

Cþ
5 selectivity and minimized CH4 selectivity

simultaneously.

Fig. 2 Trained network for CH4 selectivity data
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Fig. 3 Trained network for Cþ
5 selectivity data

Table 2 Analysis of variance and regression coefficient of the RSM modeling

Item Model for CO conversion CH4 selectivity Cþ
5 Selectivity

F_value P_value F_value P_value F_value P_value

Model 213.34 \ 0.0001 7.21 0.0091 444.73 \ 0.0001

T(K) 305.16 \ 0.0001 14.24 0.0044 120.64 \ 0.0001

P(bar) 466.89 \ 0.0001 1.58 0.2399 1140.29 \ 0.0001

T(K) * T(K) 80.98 \ 0.0001 5.81 0.0392 73.28 \ 0.0001

P(bar) * P(bar) 4.05 \ 0.0001 – – – –

T(K) * P(bar) – – – – –

R2 0.99 0.72 0.99

Radj
2 0.98 0.58 0.99

RSM models used for simulation

CO conversion = 7174.89464 - 27.01005 9 Temperature ? 3.92459 9 Pressure ? 0.025422 9 Temperature2 ? 0.22209 9 Pressure2

CH4 selectivity = 2425.48936 - 9.06181 9 Temperature - 0.49879 9 Pressure ? 8.48642E(-3) 9 Temperature2

Cþ
5 selectivity = 2582.30640 - 9.63979 9 Temperature ? 3.99115 9 Pressure ? 8.98494E(-3) 9 Temperature2
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5 Conclusions

As noted earlier, there have been few researchers who have

investigated the Fischer–Tropsch products selectivity,

quantitatively. The modeling of the CO conversion and

hydrocarbon selectivity of the Fischer–Tropsch synthesis

over Fe–Ni/Al2O3 catalyst was investigated by using cou-

pled artificial neural networks and design of experiment.

Pressure and temperature were selected as the variable

parameters. ANN was employed to train networks related

to original experimental data, and central composite design

was used for designing of experiment in the exact range of

temperature and pressure as the original operating condi-

tion. After training data by ANN and determination of

DOE points by CCD, these results were combined together

for producing simulated data to be used in response surface

method. The approach of RSM provided the regression

equations for CO conversion, CH4 selectivity, and Cþ
5

selectivity according to the temperature and pressure. The

analysis of variance was employed to test the significance

of the parameters in the equations. The concluding equa-

tions were obtained (CO conversion, CH4 selectivity, and

Cþ
5 selectivity). The results illustrated that artificial neural

network is a practical tool to model and estimate catalytic

behavior in reactors. The results also indicated that CO

conversion increased with an increase in both in tempera-

ture and pressure. The methane selectivity increased by

increasing the temperature and decreasing pressure. The

pressure possessed a positive effect on Cþ
5 selectivity at

Table 3 The obtained RSM models in coded version

CO conversion ¼ þ 39:24 þ 10:65 � Aþ 13:18 � Bþ 3:97 � A2 þ 0:89 � B2

CH4 selectivity ¼ þ 5:13 þ 2:99 � A� 1:00 � Bþ 1:33 � A2

Cþ
5 selectivity ¼ þ 21:86 þ 2:60 � Aþ 7:98 � Bþ 1:40 � A2

A Temperature, B Pressure

Fig. 4 Contour (a) and 3D surface (b) plots for CO conversion

Fig. 5 Contour (a) and 3D surface (b) plots for CH4 selectivity
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any temperature. The Cþ
5 selectivity also remained

approximately constant at low to moderate temperatures

while from moderate to high temperatures, it increased

with temperature. These models show how the main

parameters in the process can affect the products distribu-

tion. Finally, the optimization of the products distribution,

in which maximization of Cþ
5 and CO conversion and

minimization of CH4 occurred simultaneously, was done.

The optimum condition is around T = 558 K, P = 8 bar.
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