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Abstract Natural gas consumption forecasting is crucial for transmission system operators, distribution system operators,

traders, and other players in the market. This work collects natural gas forecasting scientific works in accordance with the

forecasting tool used by Energinet, the Danish transmission system operator. The work provides an analytical description

on the long-term stability and security of the natural gas transmission system in Denmark. This work offers a detailed

scientific directory on natural gas forecasting, presenting the so far vaguely described market in a more structured manner.

The paper was focused on presenting the latest findings on identifying the selection each time of the appropriate prognostic

model for each application based on: � the option for supporting double seasonality, ` various exogenous variables, ´

suitability for day-ahead forecasting, and ˆ ease of use and all these versus Energinet’s current model.

Keywords Natural gas � Forecasting � Natural gas supply chain � Gas infrastructure

1 Introduction

Natural gas is one of the most important sources of energy,

both for Denmark and for the world. Globally, natural gas

accounts for 22% of the world’s energy consumption

(Shaikh et al. 2017). In 2017, approximately 17% of

Denmark’s energy consumption was provided by natural

gas (Danish Energy Agency 2018a), and the energy con-

sumption in Denmark based on source can be seen in

Fig. 1. Natural gas is regarded as the cleanest fossil fuel

and with the world’s policies prioritizing green energy, and

environmental impact, natural gas is seen as a good tran-

sition to completely clean energy from fossil fuels (Ka-

radede et al. 2017; Zhang and Liu 2017; Liu et al. 2018).

One important example of this is China, which has the

highest greenhouse emissions in the world due to high

carbon energy consumption (Shaikh et al. 2017), where,

currently, there is a reduction in coal usage along with the

increase in the use of alternative sources, such as natural

gas (Liu et al. 2018). Annually, approximately 2.5 billion

Nm3 natural gas is consumed by Danish customers,

whereas approximately 0.8 billion Nm3 natural gas is

exported to Sweden through Denmark (Bruun 2017).

This project was facilitated by Energinet, in order to

describe the current knowledge in a more structured man-

ner and try to eventually improve their current natural gas

demand forecast accuracy, with the aim of providing more

accurate inputs for their natural gas balancing market. All

the data used are based on historic data provided by

Energinet, and Energinet Energy Data Service.

Denmark’s government has the goal to be independent

of fossil fuels by 2050 by introducing more renewable

energy (Denmark.dk 2018). This is not completely con-

tradicted by the current usage of natural gas, since the same

infrastructure can be used for bio-natural gas (BNG), which

is similar to natural gas in composition, obtained though

from renewable and biological sources. In 2017, the sup-

plied biogas accounted for 5% of the total consumption and
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more biogas plants are currently being built (Energinet

2017b). Biogas plants usually use manure, agricultural

waste or household waste (Sotiropoulos et al. 2018) as

input to create raw biogas in a circular manner. Natural gas

is characterized by high methane content and biogas can be

made into a similar composition by upgrading raw biogas.

Raw biogas has a methane concentration of approximately

65%, whereas the upgraded biogas has a methane con-

centration of around 98% (Energinet 2017b). This means

that BNG can be used as a substitute for natural gas,

therefore it can replace fossil fuel usage with a renewable

energy source. This will contribute in reducing further CO2

and greenhouse gas emissions in the atmosphere in various

ways (Danish Energy Agency 2018b).

Energinet is the transmission system operator (TSO) for

natural gas and electricity in Denmark, and is an inde-

pendent public enterprise owned by the Danish Ministry of

Energy, Utilities and Climate. Energinet’s main purposes,

as listed on their website, are maintaining a high level of

security of supply, integrating renewable energy, and pro-

moting optimal conditions for Denmark’s electricity and

gas markets (Energinet 2017c; 2018d). Energinet consists

of six subsidiaries and two business service companies, as

can be seen in the organizational chart in Fig. 2. The two

business service companies are Engineering and Con-

struction and Business Services. Business Services pro-

vides IT, procurement, finance, and facility services to the

group’s companies in order to support them. Engineering

and Construction unit handles the operation and mainte-

nance, and construction works in the Danish gas trans-

mission system (electricity transmission is responsible for

the electricity transmission grid). Electricity System

Operator is the responsible for electricity markets, system

development, and system operation. Gas TSO is responsi-

ble for the physical gas transmission system as well as the

gas market. Gas Storage Denmark owns the Stenlille and

Lille Torup natural gas storage facilities and operates the

specific storages. Gas Distribution Denmark is a grid

company that distributes gas to 120,000 customers. Data-

Hub provides data services to the participants in the elec-

tricity market and optimizes market circumstances for

customers (Energinet 2018c, e, f).

Due to the high capacity and continuity requirements,

natural gas is usually transported through pipelines from

the extracted or stored locations to the final users. The gas

pipeline can be divided into 2 sections, the transmission

network and the distribution networks. The transmission

network consists of larger diameter and higher pressure

pipes, aimed at transporting the gas over longer distances

towards different distribution lines. The distribution lines

consist of smaller diameter and lower pressure lines,

stemming from transmission lines and ending at the end

users. As the distribution lines need to reach the final

consumers, they are more spread out in a network structure.

Figure 3 shows the gas transmission infrastructure in

Denmark. The natural gas infrastructure of Denmark con-

sists of a transmission line of approximately 926 km of

high pressure pipeline (Energinet 2017a), which is a rela-

tively short and simple system compared to most European

countries. The pressure range for the natural gas inside the

Danish transmission lines is around 44–80 bar, with 44 bar

being the minimum acceptable value. The high pressure is

Fig. 1 Gross energy consumption in Denmark based on data source originated from Danish Energy Agency (2018a)

2 O. A. Karabiber, G. Xydis

123



useful for mainly two reasons, firstly the gas flows from

high pressure points to the lower pressure points in the

distribution network, so the pressure provides the flow of

gas. Secondly, high pressure allows for building of ‘‘line-

pack’’, which is the stored gas in the pipelines that act as a

buffer for fluctuations.

During the transport of the gas through the pipeline

pressure losses are encountered due to high flow, low

diameter, long travel distance, and high internal pipe

roughness (Energinet 2018b). Gas flows at around 25 km/h

in high pressure pipelines (Chen et al. 2018), therefore the

TSO should plan in advance the required amount of line-

pack or pressure in the pipelines as natural gas can only be

supplied to the system at predetermined points, such as

storage areas, from other markets or from other subnets via

the compressor station. In order to predict customers’

possible usage, short-term forecasting of the consumption

is required by the TSO.

As providing security of supply is one of Energinet’s

main purposes, many simulations are run in order to be

aware and ready for difficult situations, such as extreme

weather conditions, maintenance, unplanned simultaneous

breakdowns at different facilities and so on. Maintaining

security of supply should be balanced with the available

capacity and operational costs. Increasing the security of

supply might mean that there could be less capacity for

flow, on the other hand working with high pressures or

increasing the capacity might result in high operational

costs (Energinet 2018b). In order to provide security of

supply, the linepack must be flexible, meaning there should

always be some margin in the pipelines for gas injection, as

well as for gas withdrawal. The optimal balance in all these

areas should be found in order not to have supply inter-

ruptions or to avoid the excessive increase in customers’

bills, as significant capital investments are needed to

improve the physical gas infrastructure (Ronan et al. 2017).

Linepack consists of three sections: Linepack to support

minimum pressure, linepack to support flow, and flexible

linepack, which can be seen in Fig. 4. Linepack to support

minimum pressure is approximately 40–44 bar, since this

Fig. 2 Energinet organizational chart based on (Energinet 2018e, f)

Fig. 3 Danish transmission gas infrastructure. Egtved compressor station is shown as a circle. The orange line shows the pipeline, whereas the

orange dots represent measurement and regulation stations. Image edited from Energinet (2018b)
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is the minimum acceptable pressure in the transmission

pipelines in Denmark. Linepack to support flow is required

as the pressure in the pipe tends to decrease along the

pipeline. The pressure is at its highest pressure levels at the

inlet or pressurization location, and decreases with the flow

as the distance from the input point increases. Therefore, in

order to have minimum 44 bar pressure throughout the

pipe, the inlet points must have a higher pressure so there is

flow inside the pipe. The first two sections of the linepack

are mandatory to keep in order to provide a functioning

system. The third section is the flexible linepack, which

provides security to keep the system within the accept-

able operating limits. The flexible linepack is useful,

because, if for example, there is excessive consumption,

the flexible linepack will decrease while linepack to sup-

port flow will still be maintained. In the reverse case, where

the consumption is low and the production is too much, the

flexibility allows the system to be kept under the maximum

operating pressure. It is, therefore, critical for the TSO to

regulate the flexible linepack in order to provide a func-

tioning system without down time. Consequently, good

forecasting accuracy is crucial to regulate the flexible

linepack in a satisfactory manner.

In Denmark, before 2013, the transmission pipelines

were all connected directly without separation, meaning

that any gas injection or removal would affect the whole

system. On October 1st, 2013, with the introduction of the

Egtved compressor station, the transmission system

became divided into four subsystems. The flow between

the four subsystems can be controlled with compressors by

bringing the lines to required pressures. The previous

system was similar to a bathtub with various entry and exit

points, whereas the current system is like a bathtub with

four divided sections, which can be seen in Fig. 5. The four

sections, which are called subnets, are named after the

relative geographical location of the transmission pipelines

with reference to Egtved, and they are Vest, Syd, Nord, and

East subnets. The pipe volume of each subsystem is 50.20,

66.96, 30.70, and 140.80 m3 respectively (Energinet

2018b).

For the consumption data for Nord subset, the yearly

seasonality is obvious and easy to spot. It is also seen that

the yearly consumption levels are close to each other which

can be confirmed in Table 1.

In the summer periods, the lowest consumption drops to

barely under 10 million kW h, and in the peak of the winter

there are days where consumption exceeds 50 million

kW h. The same trend can be seen in the other subnets as

well (Tables 2, 3 and 4).

In the East Subnet, Table 2 shows that the general

consumption has been quite stable over the years

2014–2017.

The descriptive statistics seen in Table 4 shows a quite

stable mean consumption with a high deviation in the

minimum consumption.

As expected, natural gas consumption increases in the

colder winter periods and decreases when the temperatures

rise in the summer. This is a result of natural gas being

Fig. 4 Balance between market, security of supply and costs. Image taken from Energinet (2018b)
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used for heating purposes when the outside temperatures

drop.

The descriptive statistics analysis of the four different

subnets is graphically shown in Fig. 6.

The distribution pipeline in Denmark is approximately

17,000 km long. Pressure of the main distribution pipeline

is 16–40 bar depending on the location. The connection

from the transmission lines to distribution lines is provided

by 43 measurement and regulation (M/R) stations, which

help regulate the pressure according to the requirements of

the specific grids. Via the distribution grid, the natural gas

is transferred to approximately 400,000 private households

and commercial users. As the gas reaches the final

Fig. 5 Entry and exit points of Danish gas transmission system. The image on the left shows the gas system before 2013, the bathtub model,

whereas the right image shows the divided bathtub model with the introduction of the Egtved compressor station. Figure generated by the author,

according to the model in Energinet (2018b)

Table 1 Descriptive Statistics for Nord Subnet Daily Natural Gas Consumption for Years

Year Mean

(kW h)

Minimum

(kW h)

Maximum

(kW h)

Standard deviation

(kW h)

2014 25,013,528 6,589,409 53,635,448 9,902,976

2015 24,467,338 8,168,005 59,996,238 9,032,550

2016 26,418,169 7,636,080 64,468,210 11,516,081

2017 26,348,950 8,253,590 57,555,795 10,523,433

Table 2 Descriptive Statistics for East Subnet Daily Natural Gas Consumption for Years

Year Mean (kW h) Minimum (kW h) Maximum (kW h) Standard deviation (kW h)

2014 40,091,985 10,760,932 102,570,590 21,330,647

2015 40,563,186 10,679,709 95,589,634 19,380,588

2016 42,123,505 9,744,949 97,088,392 22,624,178

2017 41,579,999 12,574,105 103,929,467 20,672,814

Table 3 Descriptive statistics for Syd Subnet

Year Mean (kw h) Minimum (kw h) Maximum (kw h) Standard deviation (kw h)

2014 6,623,305 1,340,045 16,339,368 3,029,768

2015 6,685,606 1,796,873 14,053,236 2,652,941

2016 7,303,537 1,748,445 17,818,953 3,503,283

2017 7,089,720 2,457,701 15,640,659 2,939,855
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consumers, the pressure is lowered depending on the

requirements, even down to 20 mbarg (Energinet 2017b).

The research carried out in this paper took place at the

city of Herning, Denmark with the years 2018–2019.

2 Literature review

2.1 Natural gas consumption forecasting

There are numerous forecasting models available, and

many things to consider when choosing the right model in

order to extract the maximum information possible from

the data at hand. Some of the important parameters can be

readily found in the literature review table, such as the

forecasting range, forecast application area, available

variables, and the amount of data at hand. Moreover, there

are observations made from the preliminary analysis, such

as the double seasonality of the data which is crucial to be

incorporated into the model.

The amount of data at hand is also an important aspect,

as in certain situations the data-set might be very small or

filled with outliers which makes it hard to fit. In these cases

special attention to models that could generalize on these

should be selected. In other cases, the forecasting model to

be used might require a lot of data to proceed, such as

artificial intelligence models. Forecast application area is

important, as an industrial company might prioritize and

benefit from a different approach than a city. Even in terms

of cities, an industrial location and a residential location

will exhibit different behaviour so it is important to con-

sider this information while choosing a model.

The literature regarding natural gas consumption fore-

casting is not as extensive as in the case of electricity

forecasting (Chen et al. 2018; Panapakidis and Dagoumas

2017; Panagiotidis et al. 2019). This is mainly due to

Table 4 Descriptive statistics for Vest subnet

Year Mean (kW h) Minimum (kW h) Maximum (kW h) Standard deviation (kW h)

2014 1,004,903 275,394 1,923,679 353,526

2015 1,087,046 341,309 1,875,525 317,858

2016 1,020,324 271,889 1,898,562 330,201

2017 1,059,836 357,270 1,767,364 302,395

Fig. 6 Descriptive comparative statistics for Nord, East, Syd, and Vest subnet per year
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electricity being a much less flexible commodity (Kara-

biber and Xydis 2019), meaning that it is not easy to store,

and the balance has to be much more precise compared to

relatively large pressure range in the line pack in natural

gas pipes. Having said that, natural gas forecasting is

equally important for shippers, TSO’s, DSO’s, shippers,

traders, and players on the market—recently many studies

were done reflecting this importance (Karabiber and Xydis

2019).

One of the most comprehensive literature surveys of

natural gas consumption forecasting is by Soldo (2012). He

classifies the literature on natural gas consumption fore-

casting by different parameters such as publishing year,

forecasting horizon, applied area, data frequency, input

data types, and forecasting tools used. His paper covers the

literature until the end of 2010. A more recent study, that is

published by Tamba et al. (2018), focuses not only on

consumption forecasting, but also on production, prices and

income elasticity, volatility in the market, and price hikes.

In this literature review, which builds upon Soldo (2012)’s

work, a similar classification is used, and the papers are

covered until the end of 2015. At the end of the paper,

Tamba et al. (2018) makes some suggestions for future

literature. One suggestion is that the input variable fore-

casts, such as weather forecasts, should be used instead of

their actual measurements, in order to observe the effects

of the forecasting variables’ inaccuracies. It is a quite

crucial point, as the users of the forecasting tools do not

have the actual values of some variables into the future,

and the error in the input variables will affect the accuracy

of the forecasts. In order to address this issue, it is always

important to work via sensitivity analysis, to show the

effect of the error in the input variables to the accuracy of

the forecasts. Extending Soldo (2012)’s and Tamba et al.

(2018)’s work, some of the notable papers on natural gas

consumption forecasting from the beginning of 2016 until

August of 2018 are examined. The same classification set

by Tamba et al. (2018) is followed as it is comprehensive

and useful for identification.

In the natural gas forecasting area, some topics require

emphasis, as they are quite differentiated from the rest. One

such topic is the demand forecasting of China’s yearly

consumption. This topic is quite significant and visited by

many authors, as China has seen huge growth in the last

30 years. Natural gas consumption has seen even more

growth than China’s economic growth and this requires

special attention in the planning of policies and resources

(Zeng and Li 2016). Similar to China, as a growing

country, Turkey has also seen a similar attention on dif-

ferent levels of forecasting.

2.2 The grey model and the generalized Weng

model

Zeng and Li (2016) worked on an improvement of the grey

model, which they managed to train with a very small data

set consisting of nine points. Their model automatically

adjusts model parameters, and provides lower MAPE than

the other Grey Models tested. They forecast consumption

in China for the next 5 years and provide policy sugges-

tions. Liu et al. (2018) made a long-term forecasting model

for China, with a novel approach for this problem using a

per capita perspective, considering variables such as nat-

ural gas price, income, length of pipe, natural gas popu-

lation, household size, energy substitution, ambient

temperature, and central heating. Shaikh et al. (2017) use

two different optimized grey models in order to forecast

China’s long-term natural gas consumption. The models

used accurately capture the nonlinear growth pattern of the

forecasted consumption data. Shaikh and Ji (2016) also

forecast China’s long-term natural gas consumption using

logistic modelling analysis. They present a good overview

of their forecast and of the other forecasts for the same

period and area. The Diebold-Mariano test is utilized to

compare the forecasting results. Their results are also

comparable with more complex models, signifying that

over-complexity is not required to address this forecasting

problem. Zhang and Liu (2017) combine the grey neural

network model with the global searching feature of the

particle swarm optimization model for the long-term gas

load forecasting of a province in China. Although the

results are promising, it would be good to have the model

tested in multiple provinces. Wu and Shen (2018) use a

particle swarm optimization algorithm in order to optimize

the coefficients for the proposed grey related least squares

support vector machine approach. The results show that the

accuracy surpasses the conventional grey model and Arti-

ficial Neural Network for yearly forecasting of China’s

natural gas consumption. Fan et al. (2018) use a combi-

nation approach using grey model and self-adapting intel-

ligent grey model, and having a genetic algorithm to

determine the weight of each model. Annual share of

natural gas in the total energy consumption is used as a

means to determine the level of the data. The results show

improvement in forecasting accuracy and also statistical

tests are applied to show the statistical significance of the

forecasting improvement. Ma and Liu (2017) propose a

new model combining the grey model and the polynomial

model. The comparison of the combination to other similar

models shows an improvement in the forecasting error.

Wang et al. (2017) propose a hybrid grey model in order to

forecast the yearly natural gas consumption of 30 regions

in China. The study shows lower error value compared to

other studies, however, the test set used in cross-validation

A review of the day-ahead natural gas consumption in Denmark: starting point towards… 7
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only comprises two points, even though the results are

tested in 30 regions. Ding (2018) uses a hybrid method

which is a novel, intelligent, univariate grey model to

forecast China’s yearly natural demand, and results show

smaller error than conventional grey models. The future

forecasts are similar to international agencies and other

researchers, justifying the results.

Li et al. (2016) forecast China’s long-term natural gas

production using the generalized Weng model. The main

data used is the estimation of the reserves remaining in

China. The main weakness of the study is that no error

metrics are utilized in order to measure the accuracy of the

forecast. Instead, the forecasted values are compared to

other estimates such as IEA’s World Energy Outlook 2015

and BP’s Energy Outlook 2035. Zhang and Zhou (2018)

Use a combination of Boltzmann model and a polynomial

curve to forecast China’s yearly natural gas consumption.

The combination offers lower error than both of its com-

ponents and greatly increases forecasting accuracy. Wang

and Lin (2017) estimate the consumption peak for China’s

natural gas consumption. The paper includes a detailed

factor and sensitivity analysis, and includes long term

consumption forecasting, however, similar to Li et al.

(2016), no error metrics are provided. Chai et al. (2018) use

decomposition tools and statistical tests to choose variables

which show that urbanization carries a significant effect on

future natural gas consumption. Partial least square

regression is used to build the forecasting model to predict

China’s yearly natural gas consumption and it yields low

forecasting error. Results are presented as scenario

analysis.

2.3 Long-term natural gas forecasting

Karadede et al. (2017) introduce and test a breeder algo-

rithm approach for coefficient optimization for a nonlinear

regression for long-term natural gas forecasting. Similar to

Karadede et al. (2017), Wang et al. (2018) use a hybrid

algorithm where the particle swarm optimization method is

used to optimize the parameters of the wavelet neural

network. This helps with a global search that avoids local

minima in neural network optimization. The model is used

for forecasting three scenarios for the long-term natural gas

consumption in China. Ervural et al. (2016) use a hybrid

algorithm where genetic algorithms are used to choose

parameters to forecast monthly consumption of Istanbul,

which is a city with over 15 million inhabitants. The results

of the study are not presented in depth although it is seen

that the genetic algorithm autoregressive moving average

(ARMA) hybrid method performs better than the classical

ARMA model. Ozdemir et al. (2016) use a hybrid approach

where a genetic algorithm-simulated annealing method is

used to estimate linear regression parameters for long-term

forecasting of Turkey. The results are compared with a

previous paper and seem to achieve better accuracy. The

forecasts are used to construct two scenarios for future

consumption.

Akpınar and Yumusak (2016) forecast the year-ahead

natural gas consumption with monthly frequency using

univariate statistical methods for a city. The methods tested

are time series decomposition, Holt-Winters exponential

smoothing, and Autoregressive Integrated Moving Average

(ARIMA) variations. The models with the highest accuracy

are ARIMA and Seasonal ARIMA, and it is presented that

as the complexity of the model increases the accuracy

increases for the tested models. Chen et al. (2018)’s work

revolves around comparing different autoregressive fore-

casting models. In general, the exogenous models outper-

form models without exogenous variables. It is mentioned

that when nomination data is included, temperature input

becomes insignificant, however, this is most likely due to

the nominations are being done using temperature predic-

tions. Proposed FARX model outperforms other AR

models tested, nevertheless other models that utilize

exogenous variables, such as ANN or ARIMAX models are

not considered in the comparisons.

Panapakidis and Dagoumas (2017) present a good

overview of artificial intelligence based models in their

literature survey. They work with datasets with many

missing values, therefore they use wavelet transformation

in order to smooth out the data. Then, a novel hybrid

algorithm that consists of ANFIS-GA-FFNN is applied.

Each region is inspected separately. The test data set is

6 months so the data is not tested in the second half of the

year. The data is tested with various regions and the results

are presented clearly with various error calculation meth-

ods. Akpınar et al. (2017) worked on a hybrid method in

order to make short term forecast for regional level. They

use artificial bee colony trained ANN and show that it has

better accuracy than backpropagation trained ANN. Merkel

et al. (2018) compare the forecasting results of a deep

neural network (DNN) to linear regression and a traditional

ANN, and points out that the DNN outperforms both in

various occasions. Some other important points mentioned

are that the deeper the network, the better results are

achieved, although DNN does not outperform in every

region so it is suggested that various forecasting methods

should be evaluated together. Bai and Li (2016) forecast

the daily natural gas consumption for a city in China. It is

shown that SC-SVR model outperforms backpropagation

NN and least squares SVR methods for the given dataset. A

weakness of this study is that there is a selection bias in the

test set as only the last 60 days of the year are tested.

Therefore, the accuracy metrics are not fully reliable as it

does not include a full year nor exceptions such as the

Chinese holidays.
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Khani and Farag (2018) propose a new two-stage model

where the temperature dependent and temperature inde-

pendent parts of the gas demand are evaluated in parallel,

and the online data is used for calibration. The forecasts

can be done for hourly and intra-hourly intervals. The

results are compared with ANN and regression tree models

and the proposed approach show lower error and process-

ing times. The real world challenges of the proposed model

are also discussed. Naim et al. (2018) show that the

TBATS model performs well with data with multiple

seasonality and it is also seen that using MAPE errors is

better for training than using RMSE errors for the TBATS

and BATS models. Kovacic and Dolenc (2016) forecast the

monthly natural gas consumption for a chemical processing

plant in Slovenia. The chemical plant accounts for 1.47%

of the natural gas consumption of Slovenia. Genetic pro-

gramming and linear regression are applied in order to

minimize a cost function. The most successful model

constructed by the genetic program is applied in real life

and is seen to be superior to expert predictions in mini-

mizing the cost function.

Baldacci et al. (2016) use two forecasting models, one

based on a similar day and one based on local regression

approach. Local regression approach seems to spot

anomalies with high precision. One significant contribution

of the paper is the in depth investigation of consumers’

behaviours to turn on heating based on temperature chan-

ges. Another important point of the paper is the focus on

anomaly prediction which could be a useful tool for

transmission and distribution system operators. MARS,

CMARS methods proposed by Özmen et al. (2018), which

are kind of piecewise polynomial regression models, out-

performs NN and Linear Regression and returns high

accuracy and lower variance. In the study, the test period is

kept at one year which shows that the model performs well

over a relatively long time frame. Gascon and Sanchez-

Ubeda (2017) also investigated the piecewise linear addi-

tive models, and proposed the SNAKE method. Their

suggested method is seen to be competitive against neural

network models. In addition, the base temperature for

heating degree days (HDD) is not set in advance and is

determined by the model.

Duangnate and Mjelde (2017) investigate how the

variable selection and number of variables effect the

forecasting accuracy. Despite their conclusion being

ambiguous, they suggest that various methods should be

tested, and the best method should be identified according

to available data and the forecasting need. They also show

that the factor models have beneficial information for

forecasting. However, too many parameters negatively

affect forecasting performance. They have also shared their

code and raw data which enables repeatability of their

work. In Scarpa and Bianco (2017)’s meta study for the

quality of natural gas consumption, they investigate the

accuracy of long-term yearly forecasting models using

standard regression and argue that the input variable

accuracy, such as gross domestic product (GDP), heating

degree days (HDD), and the price is crucial to forecasting

accuracy. Akouemo and Povinelli (2016) work on anomaly

detection for natural gas demand. Their proposed method

significantly increases the accuracy of linear regression by

eliminating the outliers in the training set. Hribar et al.

(2017) present empirical models and argues that they are

valuable to understand the relationship between the input

data and the dependent variable. The accuracy of the

forecasts could have been better presented. Ronan et al.

(2017) successfully implement a composite weather vari-

able (CWV) that takes into account many weather variables

in order to forecast peak day consumption and provide an

insight into how TSO’s plan for peak consumption events.

Their study also backs up Soldo et al. (2014)’s findings in

showing that using solar radiation data helps get better

forecasting results. In Table 5 there is an analytical list of

published papers according to different classifications.

Table 5 presents the applied statistical mathematical, eco-

nomical, artificial intelligence, and hybrid-combinational

models on their application areas. It compares the main

input data sources and their forecasting horizons.

3 Natural gas market model, storage, and gas day

Except for BNG, natural gas entry to Denmark takes place

either from the North Sea or from Germany. From these

points, the natural gas passes through the transmission

pipes and is either used in Denmark, stored in one of two

large storages, Stenlille and Lille Torup, or it is transferred

to Sweden or Germany. Denmark has a two-way transac-

tion with Germany, meaning the gas can both be imported

and exported. On the other hand, Sweden has no natural

gas generation other than biogas, which is in small quan-

tities, thus Sweden relies solely on the imports from Den-

mark. Sweden has no other natural gas source, except some

small amounts of BNG production. The physical gas sup-

ply chain explaining the flow of the gas from the produc-

tion to the final consumer is shown in Fig. 7 (Karabiber and

Xydis 2020).

Usually, BNG does not enter the transmission line

directly, as it would need a lot of pressurization, instead it

is injected into the distribution lines where the pipes

operate with lower pressure. This causes some hardship as

natural gas consumption is usually measured at the trans-

mission system points, thus a rise in BNG production

would mean less gas offtake from the transmission system.

Hence, while forecasting the natural gas consumption,

A review of the day-ahead natural gas consumption in Denmark: starting point towards… 9
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BNG production can also be an important parameter,

especially in regions where BNG production is extensive.

The natural gas used in Denmark comes mostly from the

North Sea, especially from the Tyra offshore platform. Due

to the subsidence in the platform, it is planned to be shut

down for maintenance from November 2019 and until July

2022. This means that Denmark will be depending heavily

on the imports from Germany as less than 10 percent of

normal production levels will be supplied from Tyra. This

will cause a lower flexibility and, consequently, the need

for a better forecasting model arises (Energinet 2018g).

A sample gas infrastructure is shown in Fig. 8. The

transmission lines that are owned and run by Energinet

carry odourless natural gas at high pressures of about

40–80 bar. Passing through M/R stations they are trans-

ferred to distribution pipelines run by DSO’s at a lower

pressure. At this point, an odorous substance is added to the

gas for safety reasons. Through the distribution pipelines,

the pressure is further reduced depending on the needs of

the consumers, thus the gas reaches the industrial or

household consumer. Additionally, in the distribution lines

there are also M/R stations to further regulate pressure, and

measure consumption.

The transfer of the gas through the physical infrastruc-

ture is not analogous with the market’s actions. An inter-

esting example of this is that, despite the physical gas flow

from Denmark to Sweden is one way, a power plant in

Denmark is allowed to buy BNG from Sweden. This is

merely a market transaction, as the physical gas supplied to

the power plant is the gas available in the pipeline. Fig-

ure 9 shows the interaction between the physical gas

transfer and the gas market.

In order to trade natural gas, the shippers first need to

reserve the required amount of capacity in the physical

pipeline. The capacity reservation can be made yearly,

quarterly, monthly, daily, or for the rest of the day.

Afterwards, the shipper makes a nomination, informing

Energinet how much gas inflow and outflow is expected for

the upcoming gas day. The system is built in a way so that

the shippers are incentivized to balance their portfolios.

Energinet informs the shippers five times a day about their

offtake and the shippers can re-nominate or buy and sell

gas to balance their portfolio. After the gas day, allocation

is done, and the balance of the end positions of the shippers

can be seen through allocations made (Energinet 2018a).

There are different platforms for trading gas and buying

capacity. The capacity for Ellund and Dragør is sold on

PRISMA platform, whereas the capacity for Nybro, Exit

zone, and BNG Entry is sold on the Energinet platform.

Gas trading in Denmark is made via Gaspoint Nordic

system, which is a market open ceaselessly (Energinet

2018a).

As a principle, the transmission system should always be

in balance, however due to the linepack, it is possible to

have imbalances on the short term. In order to provide

balance, Energinet incentivizes shippers to balance their

positions, and, in addition, it can also buy and sell gas on

the exchange, and inject or withdraw gas from the storage

facilities. The nominations and consumption forecasts are

used to regulate the flexibility and linepack. Each day the

green zone and the yellow zone for the balancing system

are calculated using the nominations and consumption

forecasts, and published on Energinet Online. The green

zone, which is the area in the middle between two black

lines in Fig. 10, shows the recommended balance of the

pipeline, where Energinet is not allowed to trade. In the

yellow zone, which is above or below the green area,

Energinet can buy and sell gas in order to balance the

system. It is seen that the zero balance in the green line is

not symmetrical and they are calculated before each gas

Fig. 7 Physical gas supply chain
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day depending on the linepack and Energinet forecasts.

Players in the market that are out of balance at the end of

the day ‘‘cash-out’’, meaning that whatever imbalances,

which they have are bought by the TSO.

In Denmark, there are two main underground natural gas

storage sites, Stenlille and Lille Torup. These sites are

crucial as they serve two important purposes for the

security of supply. Firstly, they can store natural gas that

can be used in case of interruptions in the supply by pro-

viding a buffer for injection. Secondly, they can also be

used to withdraw gas from the system when there is too

much pressure, that is, in instances of at high production

and low consumption.

Both storage facilities work under their owner, Gas

Storage Denmark A/S. Unlike Energinet, Gas Storage

Denmark is a for-profit company and they sell storage

services on the northwestern European gas market (En-

erginet 2018f). Energinet owns some of the storage reserve

and has the right to inject or withdraw gas from the storage

in order to balance the linepack.

Lille Torup storage is located at the Nord subnet where

the natural gas consumption is the second highest after the

East Subnet. Lille Torup is a cylindrical underground salt

reservoir of 5 km height and diameter that consists of 7 salt

caverns. The total storage volume available is 4965 GWh

which is equivalent to 435 million Nm3. Stenlille storage is

located at Zealand region in the East subsystem, which has

the highest natural gas consumption of the four subsystems.

It is an aquifier type storage facility that uses clay-sand as

an enclosing ‘‘pillow’’ at 1 km depth from the ground. The

total storage volume available is 5855 GWh, which is

equivalent to 513 million Nm3 (Gas Storage Denmark

2018; Energinet 2018b).

Focusing on each of the points, forecasting range along

with forecasting frequency is one of the most important

aspects of the data. It determines if the seasonality patterns

emerge or not. As an example, considering a data that has

daily seasonality with hourly frequency, and 2 day (48 h)

forecasting range is required. In this setup one has to

consider the daily seasonality in the forecasting model. If

the data frequency was daily, it would not be required, as

with the aggregation of the data, the seasonal pattern would

disappear. On the other hand, if there was yearly season-

ality, depending on the model and the strength of

Fig. 8 Physical gas infrastructure and owners
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seasonality, it could possibly be omitted in the 48 h fore-

cast as the yearly pattern would not emerge in such a

pattern. The frequency of the data is also important as it is

closely connected to the number of samples. Again, an

hourly data would have 168 data points for a week,

whereas a daily data would only have 7 points for the

week.

A gas day is defined as the time period in which the

natural gas consumption is measured starting from

06:00 am until the next day 06:00 am. The date of the gas

day is day includes its starting time, for example, the gas

day for 5 May 2017 starts at 5 May 2017 at 06:00 am and

ends at 6 May 2017 06:00 am. All the dates mentioned in

the study will refer to gas day for Denmark’s time zone,

which is in UTC ? 1.

Fig. 9 Interaction between the market players and the physical gas transfer

Fig. 10 System commercial balance chart graph from Energinet online

16 O. A. Karabiber, G. Xydis

123



A forecasting problem is often approached without

knowing what is the correct algorithm or a model to be

used. As long as the exogenous variables carry information

about the dependent variable and they are correctly chosen

and used; the models that use the exogenous variables are

supposed to have better accuracy compared to the models

that do not utilize those (Duangnate and Mjelde 2017).

However, it is also equally important not to overcomplicate

the model with unnecessary or redundant variables. This

creates the risk of overfitting, therefore lowers the accuracy

of the forecasts. As such, each variable taken into model

must have a good justification and must be eliminated if

necessary in order to simplify the model and avoid

overfitting.

4 Discussion

Energinet carries out many different forecasts, ranging

from very short range to decades ahead. One of their

forecasting tools, of which this study aims to increase the

accuracy by implementing various models, is their day-

ahead forecaster. This forecaster is adopted from an elec-

tricity forecasting model, therefore it is assumed that there

is possibly room for improvement and specialization for

the task.

Gathering all the information on the system balance, the

four different subnets structure, the gas supply chain, the

gas infrastructure, as well as the interaction among all

different market players and the physical gas transfer, the

outcome was to map the system needs in order to move on

to more accurate forecasting. The current practice was to

have the same electricity-oriented forecaster for the natural

gas market. There are a number of parameters that are not

sufficiently researched or even at times omitted via the

current prognostic tool. Main uses of natural gas are resi-

dential heating, industrial uses, public transport, and power

generation, with residential heating taking the lead. While

using the temperature variable in the forecasting models,

some other forecasters often use Heating Degree Days

(HDD as a conversion from temperature. The reason is that

natural gas is used mostly for heating, and heating

requirements arise below some base temperature. The

heating requirement is proportional to the temperature

below the base temperature and HDD provides a good

metric combining the time and ‘‘coldness’’ in one value.

Another parameter is the day type, e.g. if it is a weekend

or a weekday. Although sometimes, the single weekdays

that are standing in between two non-weekdays are also

marked as holidays as people often tend to take those days

off and they show similar consumption characteristics to

holidays.

Another one is, of course, the highly associated meteo-

rological conditions, such as wind speed, wind chill, rain

amounts, solar radiation, maximum & minimum tempera-

tures etc. The variability of all different meteorological

data has a strong influence to the whole system, equal to

the energy demand and prices, aiming to optimize each

model’s parameters, in order to obtain the lowest possible

error value. It should be stated here, that it is expected that

the error variation will increase towards the end of the year,

where it becomes quite hard to forecast due to cold weather

and the holiday season.

5 Suggestions for future work and importance
of natural gas forecasting

The selection criteria for choosing each time the appro-

priate forecasting model for each application are deter-

mined based on: (1) the option for supporting double

seasonality, (2) supporting exogenous variables, (3) suit-

able for day ahead prognosis, (4) ease of use. Some of the

most known forecasting models include (1) ANN Models

(nnetar—forecast package (Hyndman 2018a)); mlp– nnfor

package (Kourentzes 2017b); elm—nnfor package (Kour-

entzes 2017a); (2) ARIMA Models (auto.arima—forecast

package (Hyndman 2018b)); 3) Benchmark Model (tbats—

forecast package (Hyndman 2018c)).

Along with the identified main models, benchmark

models are also chosen and forecasts from the TBATS will

be used to provide a benchmark. TBATS is a simpler

model without exogenous variables.

5.1 ANN model

ANN models have been widely used in the literature and

seen to provide satisfactory forecasting accuracy. ANN’s

are a machine learning system that resembles the neural

networks of the biological structures (Krogh 2008; Li and

Shi 2010). One important aspect of the ANN’s is that, by

having a hidden layer, one can achieve a nonlinear output

function. In a feedforward neural network, the information

is carried forward from one layer to the next layers and not

backwards. The weights of the connections are updated in

each run, which is called the training of the network.

A DNN represents an ANN with 2 or more hidden layers.

A fully connected neural network refers to an ANN that

each node is connected to all the nodes in the next layer

with a specific weight (Hyndman and Athanasopoulos

2018).

The structure of a sample ANN with 3 layers can be seen

in Fig. 11, with 4 nodes in the input layer, 6 nodes in the

hidden layer and 1 node in the output layer. Each ANN is

comprised of an input layer, an output layer, and nodes in

A review of the day-ahead natural gas consumption in Denmark: starting point towards… 17
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the associated layers. Optionally, single or multiple hidden

layers can also be present. Each node sums its inputs

multiplied by the respective weight and the summation is

transferred to an activation function with a bias. A common

activation function is the sigmoid function which is rep-

resented as seen in Eq. (1).

f xð Þ ¼ 1

1þ e�x
; ð1Þ

The result of the activation function is the output of the

node. A sample node and calculation can be seen in

Fig. 11. During training of the conventional ANN, the

weights of the inputs and bias are updated in order to

minimize the error. One common algorithm to optimize the

weights is called the backpropagation algorithm. In this

case of forecasting, the number of input nodes is equal to

the number of variables that are inputted into the system.

The output node is always one, which gives the point

forecast result. The number of hidden layers and the nodes

in each layer will depend on the model and heuristics

testing. An ANN without a hidden layer will be analogous

to a linear regression model. Adding more layers and nodes

will enable the model to perform non-linear and more

complex tasks, whereas adding too much of them may

cause overfitting and cause the model to lose its general-

ization ability. In the case of overfitting, the noise in the

data is mistakenly interpreted as information and is con-

tained in the data (Hyndman and Athanasopoulos 2018).

5.1.1 NNETAR

NNETAR function in the forecast package in R is a feed

forward neural network that contains one hidden layer. It

uses the lagged variables as the input to the model, there-

fore it fits a neural network autoregression (NNAR).

NNAR(x, y) model uses x number of lagged variables and

has y number of hidden nodes in its hidden layer in a non-

seasonal application. The number of lags are determined by

testing the models according to Akaike’s information

criterion. AIC estimator penalizes the number of variables

while valuing the quality of the fit, therefore it allows for

selection of a good model with a minimum number of

inputs. In case the data has external regressors, they are

also input into the system similar to the lagged variables.

Because the neural networks have random weights as

starting points, they are better trained with a large number

of data. In the nnetar model, the network training is repe-

ated for a set number of times and the mean of the results

are outputted (Hyndman 2018a; Hyndman and Athana-

sopoulos 2018).

5.1.2 MLP

MLP is a function in the nnfor package in R. It sets up a

multi-layer perceptron (MLP), which is a fully connected

feedforward neural network. The mlp function is therefore

similar to nnetar, however, it provides more flexibility than

nnetar as it is possible to have more than one hidden layer.

In addition, it is different from nnetar because it uses a

different neural network package in order to train the ANN.

mlp function will be used to set up DNN’s for forecasting

in order to check for possible improvements in the fore-

casting accuracy. DNN’s in some cases may provide more

accurate results than single hidden layer ANN’s (Merkel

et al. 2018).

5.1.3 ELM

ELM function in the nnfor package in R uses the extreme

learning machine (ELM) approach in order to forecast the

series. An ELM is a special type of feedforward neural

network that does not require iterative training and is set-up

much faster than a backpropagation trained ANN. In the

ELM, the hidden nodes are randomly generated and do not

require to be fully connected. In the single hidden layer

feedforward neural network, the weights of the input to

hidden layer connections are random, whereas the weights

of the hidden layer to the output are determined

Fig. 11 A Fully connected Multilayer feedforward neural network with 3 layers and a sample ANN node
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analytically. The advantages of the ELM is the fast train-

ing, it is less likely to converge to a local minima than a

gradient-based learning, it provides good generalization

performance and the possibility to use a wide range of

activation functions (Huang et al. 2006). More details

regarding the ELM approach can be found in Huang et al.

(2006), Huang (2015).

5.2 ARIMA models

ARIMA models are one of the most frequently used and

recognized forecasting models. In order to use a certain

data with ARIMA, the data has to be stationary first. This

means that the trend and the seasonality of the data should

be eliminated before applying the ARIMA model. ARIMA

model consists of 3 parts, autoregressive (AR), integral,

and moving average (MA). AR refers to using the lagged

inputs to forecast the future data. Integral refers to differ-

encing needed to make the data stationary. MA is similar to

AR, as it is used to forecast the error using the past (lagged)

errors. (Hyndman and Athanasopoulos 2018). With this

brief explanation at hand, ARIMA(p, d, q) model means

that the data is differenced d times, p lagged points are used

in AR and q lagged errors are used in MA. An ARIMA(p,

0, q) model can also be referred to as ARMA(p, q) model

as there is no differencing involved. The regression

(Eq. (2)) with ARMA errors (Eq. (3)) with one external

regressor can be defined as follows where both equations

are determined simultaneously

yt ¼ Bxt þ nt ð2Þ
nt ¼ /1nt�1 þ � � � þ /pnt�p � h1zt�1 � � � � � hqzt�q þ zt

ð3Þ

The result of the activation function is the output of the

node. A sample node and calculation can be seen in the

Sample ANN node figure (Fig. 11). During the training of

the conventional ANN, the weights of the inputs and bias

are updated in order to minimize the error. One common

algorithm to optimize the weights is called the backprop-

agation algorithm. In this case of forecasting, the number

of input nodes is equal to the number of variables that are

inputted into the system. The output node is always one,

which gives the point forecast result. The number of hidden

layers and the nodes in each layer will depend on the model

and heuristics testing. An ANN without a hidden layer will

be analogous to a linear regression model. Adding more

layers and nodes will enable the model to perform non-

linear and more complex tasks, whereas adding too much

of them may cause overfitting and cause the model to lose

its generalization ability. In the case of overfitting, the

noise in the data is mistakenly interpreted as information

and is contained in the data (Hyndman and Athanasopoulos

2018).

5.2.1 AUTO.ARIMA

AUTO.ARIMA is a function in forecasting package of R

that is used to make an ARIMA fit using the Hyndman-

Khandakar algorithm to choose the model parameters

(Hyndman and Khandakar 2008). The algorithm first uses

the Kwiatkowski-Phillips-Schmidt-Shin (Kwiatkowski

et al. 1992) unit root test to identify if the series is sta-

tionary and to choose the correct d parameter. Then various

p and q parameters are heuristically tested and selected in

order to minimize the corrected AIC. The function is not

fully automated, and the outliers have to be cleaned, and if

there is variance Box-Cox transformation should be

applied before using auto.arima. The fitting is done using

MLE. After the fit the results should be examined for

irregularities such as autocorrelation. When using the

auto.arima function with exogenous variables, the function

works as a regression model with ARMA errors. A detailed

explanation of the procedure and best practice can be found

in (Hyndman 2018b; Hyndman and Athanasopoulos 2018).

5.3 Benchmark models

Benchmark models are simple models that are used as a

comparison to see if the more advanced models are per-

forming well. A common benchmark model is the naı̈ve

forecast which assumes the data to be forecasted is equal to

the previous value. In seasonal data, seasonal naı̈ve fore-

cast is used and it assumes the point to be forecasted is

equal to the previous seasonal value. For example, in a

weekly seasonal data, the next Monday’s value will be

forecasted as being equal to the previous Monday. Using

the MASE criteria will enable a comparison between the

naı̈ve forecast giving a natural benchmark. In this study

TBATS is selected as a benchmark for the main forecasting

models. The other benchmark is the current forecaster that

Energinet uses.

5.3.1 TBATS

TBATS function in R is used to set-up the TBATS model.

The main advantage of the TBATS is that it allows for

modelling multiple seasonalities and it works well with

frequent data, such as daily or hourly. It even allows for

modelling dynamic seasonality. It is also possible to model

the errors as an ARMA model. The function uses AIC

criteria to automatically select if Box-Cox transformation

is needed, if the data has a trend or damped trend, and to

use the ARMA errors or not. It is a powerful method that

decomposes the data into a trend, and seasonalities and

A review of the day-ahead natural gas consumption in Denmark: starting point towards… 19
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uses Fourier series to fit the seasonalities (Karabiber and

Xydis 2019; De Livera et al. 2011; Hyndman 2014, 2018c).

In order to improve forecasting accuracy and maximize

the extraction of information incorporated in the exogenous

variables, future work could focus on optimizing and

improving the existing variables versus Energinet’s current

model. Having all recent literature and existing natural gas

forecasting models in place, suggestions for improving the

forecasting methodology could follow the basic steps

suggested by Hyndman and Athanasopoulos (2018) with

some specific customizations for the forecasting task at

hand. An extended methodology can be applied to any

forecasting problem with exogenous variables. At a later

stage an improved forecasting model could be creating an

optimized single weather variable, and making a con-

sumers behaviour analyses and more effectively taking into

account also heating/cooling seasons, and delayed con-

sumer response. This could yield a better understanding of

the effects of special days and holidays and could help

reveal the exact relation between the weather effects and

consumer behaviour.

6 Conclusions

This study was focused on collecting all the latest articles

on natural gas forecasting in relation to the Danish market

and laying the foundations for future work on improving

forecasting of the Day-Ahead Natural Gas Consumption in

Denmark. The interaction among the market players and

the physical gas transfer was illustrated based on the

physical gas infrastructure and the gas market, that was till

now vaguely described. The physical gas supply chain was

displayed in relation to the end user and the gas market.

Based on this work, researchers can have a starting point

against a number of options presented, such as ANN and

ARIMA models. The goal has always been to improve the

forecasting accuracy versus the benchmark model of

TBATS in a so much different market environment com-

pared to the electricity one. Having the literature and the

most used natural gas prognostic models at place (such as

NNETAR, ELM, MLP ANN models, and AUTO.ARIMA

function of ARIMA models, compared against the tbats

benchmark model) suggestions for improving the prog-

nostic methodology could follow the comprehensive work

suggested by Hyndman and Athanasopoulos (2018), which

presents enough information about each method, so the

users to be able to move forward with the selected fore-

casting in a sensible way with some specific customizations

for the forecasting task in hand. This way, an extended

methodology can be applied to any forecasting problem

with exogenous variables and complicated seasonality

patterns.
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