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Abstract Coal is heterogeneous in nature, and thus the characterization of coal is essential before its use for a specific

purpose. Thus, the current study aims to develop a machine vision system for automated coal characterizations. The model

was calibrated using 80 image samples that are captured for different coal samples in different angles. All the images were

captured in RGB color space and converted into five other color spaces (HSI, CMYK, Lab, xyz, Gray) for feature

extraction. The intensity component image of HSI color space was further transformed into four frequency components

(discrete cosine transform, discrete wavelet transform, discrete Fourier transform, and Gabor filter) for the texture features

extraction. A total of 280 image features was extracted and optimized using a step-wise linear regression-based algorithm

for model development. The datasets of the optimized features were used as an input for the model, and their respective

coal characteristics (analyzed in the laboratory) were used as outputs of the model. The R-squared values were found to be

0.89, 0.92, 0.92, and 0.84, respectively, for fixed carbon, ash content, volatile matter, and moisture content. The perfor-

mance of the proposed artificial neural network model was also compared with the performances of performances of

Gaussian process regression, support vector regression, and radial basis neural network models. The study demonstrates the

potential of the machine vision system in automated coal characterization.
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1 Introduction

Coal is the most widely used fossil fuel energy resource in

the world since industrialization. In most of the countries, it

continues to play an essential role in the production and

supply of energy. Coal is heterogeneous in nature and

formed from decomposed plant materials. It includes dif-

ferent constituents called macerals, only grouped by its

specific course of action of physical properties, compound

structure, and morphology. According to World Energy

Council (WEC 2016), over 7800 million tons of coal are

consumed by a variety of sectors like power generation,

steel production, cement industries, etc. across the world.

Furthermore, it was estimated that 40% of the world’s

electricity generation is made from coal fuels and continue

to play a major role over the next three decades (WEC

2016). Thus, the characterization of coal is essential before

its use for a specific purpose. The characterization of coal
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can be divided into three separate categories, namely pet-

rographic analysis, physical and mineralogical analysis,

and structural analysis. This study focuses on physical and

mineral characterizations of the coal that includes predic-

tion of moisture content percentage (MC), ash percentage

(Ash), volatile matter percentage (VM), and fixed carbon

content (FC) in coal.

Coal can be divided into two categories, coking coal and

non-coking coal based on the percentage of ash content and

volatile matter. The quality of coking coal measured based

on the ash content, whereas the quality of non-coking coal

is measured based on its useful heating value (Ministry of

Coal, GOI 2014). In steel industries, coking coal (also

called metallurgical coal) with volatile carbon and maxi-

mum possible ash free is mainly used. That is, the coal with

low ash and volatile matter contents and high carbon

content are generally considered as coking coal. On the

other hand, non-coking coal does not have any caking

properties, and it is mainly used in the thermal station for

power generation. In other words, the non-coking coals

have high ash content and volatile matter with low carbon

content, and it is used in industries like fertilizer, ceramic,

cement, paper, chemical, glass, and brick manufacturing.

Due to significant variations in coal properties and specific

quality of coal requirement in different industries, the

characterization of coal has been picked as the subject of

research.

Presently, in the coal industry, chemical analysis is done

using conventional analyzers for a confirmative screening

and characterization of coal quality. The conventional

techniques (proximate analysis and ultimate analysis) of

coal characterization also require petrologists to separate

the waste coals. These conventional techniques are tedious

procedure and are the least representative. Henceforth, the

conventional characterization is needed to be replaced by

implementing the machine vision system. Petruk (1976)

was first introduced the machine vision technology in the

mining industry at the Canada Centre for Minerals and

Energy Technology (CANMET) for quantitative miner-

alogical analysis. Subsequently, the image analyser was

used in the mineral industry in South Africa (Oosthuyzen

1980). The first large-scale application of the machine-vi-

sion system in the mining industry was made by Oestreich

et al. (1995) to measure the mineral concentration using a

colour sensor system. Many other applications of machine

vision systems like particle distribution analysis, froth

flotation analysis, mineral classification, lithological com-

position, ore grindability, and mineral grade prediction

(Sadr-Kazemi and Cilliers 1997; Al-Thyabat and Miles

2006; Chatterjee and Bhattacherjee 2011) are made in the

mining and mineral industries. A machine vision system

can enable us to accomplish quantitative measures of the

characteristics of coal constituents.

Till date, countless researchers have suggested the coal

characterization techniques, but very few studies have been

done using image-processing techniques (Yuan et al. 2014;

Ko and Shang 2011; Hamzeloo et al. 2014; Zhang et al.

2014; Alpana and Mohapatra 2016; Zhang 2016). As

indicated by literature, many researchers are working on

image-based automated and semi-automated ore charac-

terization systems (Oestreich et al. 1995; Chatterjee et al.

2010; Chatterjee and Bhattacherjee 2011; Patel et al.

2016, 2017) across the world. Zhang et al. (2014) proposed

a genetic algorithm based support vector machine (GA-

SVM) algorithm for prediction of ash content in coarse

coal by image analysis. The study suggested a semi-auto-

matic local-segmentation technique to identify the coal

particle region. The study results further indicated that the

prediction performance of narrow size fractions was

superior to wider size fractions. At the same time, the

accuracy of prediction is superior for bigger size fraction in

comparison to that of the smaller size fractions. Mao et al.

(2012) discussed on porosity analysis (surface porosity and

voxel porosity) based on computer tomography (CT)

images of coal. Zhang et al. (2012) proposed an improved

estimation method of coal particle mass using image

analysis. The study proposed an image analysis technique

using the enhanced mass model for the estimation of coarse

coal particles. Kistner et al. (2013) proposed an image

analysis technique for monitoring mineral processing sys-

tems. The study utilized the texture features of the image

for monitoring the grade in froth flotation circuits in min-

eral processing systems. The study results confirmed that

the performance of the grade control could be improved

using multiscale wavelet feature of images. Mejiaa et al.

(2013) proposed the automated maceral characterization

using histograms analysis of the colour features of the

images.

Wang et al. (2018) used SVM technique for separation

of coal from gangue using colour and texture features. Hou

(2019) worked with a similar objective as separation of

coal and gangue using surface texture and grayscale feature

of coal images with feed forward neural network model.

Later, morphology-based supplementary feature and fused

texture feature were introduced for separation of coal from

gangue (Sun et al. 2019a). Sun et al. (2019b) subsequently

used fused texture feature to separate coal by using simple

linear iterative clustering (SLIC) and simple linear fused

texture iterative clustering (SLFTIC). The coal rock inter-

face was identified using fuzzy based neural network (Liu

et al. 2020).

The proposed study aims to devise an automated image

analysis system for the coal characterization with the

assistance of image processing techniques, pattern recog-

nition, and model development. The proposed study has

been carried out in multiple stages like image acquisition,
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image segmentation, feature extraction, feature selection,

and model development for characterisations. The inspi-

ration behind this work is to overcome the quality

inspection challenges faced by the mining industries by

presenting a computer-based technique. The proposed

strategy enhances the outcomes that can be acquired by

investigating the texture and color features of coal samples.

Such mechanized methods guarantee consistency in result,

reliability, exactness, cost-effective, proficiency, and are

less tedious. In addition, the proposed strategy will assist in

providing consistent results.

All over the world, various research bunches are dealing

with image-based computerized and semi-computerized

characterization techniques. Image-based characterization

of coal samples is generally done by analyzing the mor-

phological, texture, and color features. Even though the

previously mentioned systems are sufficient, they are not

abundant to indicate relevant features extraction and fea-

tures selection for coal characterization with more than

90% accuracy. Therefore, the proposed study attempts to

develop a machine vision approach for coal characteriza-

tion using digital images. The specific objective of the

proposed research is to develop a machine vision system

using artificial neural network (ANN) based algorithm for

automated coal characterization. The study also demon-

strates the comparative performance analysis of the pro-

posed model and Gaussian process regression (GPR) model

in coal characterization.

2 Materials and methodology

The proposed machine vision system will use the hardware

units like bulbs for illumination, a camera for image

acquisition, and computer for image processing. The soft-

ware algorithms have been developed for the proposed

system are automatic image acquisition, image pre-pro-

cessing, feature extractions, feature optimisation, and

machine learning in Matlab software. The detailed

description of the proposed methodology is depicted in this

section. The flowchart of the working methodology for the

development of the automated characterization of coal is

shown in Fig. 1. The steps are briefly mentioned in the

subsections.

2.1 Sample collection and preparation

In the present study, the coal samples were collected from

different mines to obtain the heterogenic nature of samples.

The sample collection mines were chosen from different

coalfields in India: Orient Colliery Mine No. 3 of Mahanadi

Coal Field Limited (MCL), Orient Mine No. 1 and 2 of

MCL, Dipka OCP of South Eastern Coal Field Limited

(SECL), Basundhara Open Cast Project (OCP) of MCL,

Raniganj Coalfields of Eastern Coal Field Limited (ECL),

Chinakuri Colliery of ECL, Barachok Colliery of ECL. A

total of twenty coal samples were collected. The number of

samples collected from each mine is shown in Table 1. The

coal samples collected were broken down to a convenient

size in the mine to get representative samples and were

then immediately moved into water/air proof compart-

ments or gathered in polythene packs with the goal that

they were not oxidized.

2.2 Image acquisition of coal samples

The first task of a machine vision system is the image

acquisition of the objects. Image acquisition can be char-

acterized as the act of capturing the image of an object or

scene to recall the condition or identification of the object

later on using an image analysis technique. A quality image

acquisition is one of the important parts of the image

analysis. In this work, the images of the coal samples were

captured using a camera in a controlled environment

(shown in Fig. 2). The image acquisition system consists of

constant illumination and a camera for image capturing.

For image capturing, a 15-megapixel camera (Make:

Logitech HD Webcam C920) was installed. The image-

capturing limit of that camera was 30 frames per second.

The light emitting diode (LED) bulbs were introduced for

encouraging steady brightening amid image capturing

procedure. The bulbs were installed at a slant of 45� from
the vertical wall of the test set-up with a specific end goal

to diminish the reflectance. These captured images are

being processed to extract image features.

Each captured digital image is shown utilizing three

primary colors (red, green, and blue). In all classes of

digital imaging, the data is changed over by image sensors

into computerized signals that are prepared by a computer

and influenced yield as a visible-light image. A total of 80

images were captured for different coal samples. The

images of coal samples captured from four different angles

are shown in Fig. 3.

2.3 Image segmentation

The captured images were rectangular in shape. The ima-

ges also contain the background and thus need to be

removed before feature extraction. More decisively, image

segmentation is the way toward assigning out a mark to

each pixel in an image to an extent with a similar specific

characteristic. Since the capture images have mostly black

for coal and white for the background, a binary threshold

segmentation technique was used for removing background

(Sahoo et al. 1988). All the image samples of coal were

accurately segmentated from the background as the
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backgrounds were not complex. The threshold operation

was done by partitioning the pixels into two classes, objects

and background at threshold gray level (Otsu 1979). An

example of the segmented image of coal samples is shown

in Fig. 4. After image segmentation, the information exists

only in the pixels which cover the coal samples.

2.4 Features extraction

Each image stores information about the objects in the

pixel. Feature extraction was done to obtain information

about the object. In this study, the color and texture-based

Fig. 1 Flowchart of the working methodology

Table 1 Name of the sample collection mines and sample code

Sample

No.

Name of the mine Number

of

samples

Sample code

1 Orient Colliery, Mine No-3

(MCL)

5 S1, S2, S3, S4,

S5

2 Dipka OCP, SECL 3 S06, S07, S08

3 Basundhara OCP (MCL) 4 S09, S10, S11,

S12

4 Raniganj Coalfield (ECL) 2 S13, S14

5 Orient Colliery, Mine

No.1&2 (MCL

1 S15

6 Barachok Colliery (ECL) 3 S16, S17, S18

7 Chinakuri Colliery (ECL) 2 S19, S20

Fig. 2 Laboratory set-up for image acquisition of coal samples
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features of images of coal samples were extracted for coal

characterization. The color-based features were extracted

in six unique color spaces (RGB, Gray, HSI, CMYK, Lab,

xyz); whereas, the texture features were extracted from

intensity image of the HSI color space in four diverse

frequency domains (Cosine, Fourier, Wavelet, Gabor).

2.4.1 Color features extraction

The camera captured the images in the RGB color space.

RGB color space has three color components [red (R),

green (G), and blue (B)]. The RGB color model was con-

verted into five other color models (HSI, CMYK, Gray,

Lab, and xyz). The HSI color model has three color com-

ponents viz. hue (H), saturation (S), and intensity (I). The

hue part depicts the color itself as a point between 0� and
360� (0� indicate red, 120� indicate green, 240� indicate

blue, 60� indicate yellow, and 300� indicate magenta). The

saturation value indicates the amount of color mixed with

the white color. The range of the S segment is between 0

and 1. The intensity also ranges from 0 to 1 (0 implies

black, 1 implies white). The HSI color components images

were derived from the RGB color components using the

following equations (Yang et al. 2012).

I ¼ 1

3
ðRþ Gþ BÞ ð1Þ

H ¼

cos�1

R� 1

2
G� 1

2
B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ G2 þ B2 � R� G� R� B� G� B

p
2
664

3
775 if G�B; or

360� cos�1

R� 1

2
G� 1

2
B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ G2 þ B2 � R� G� R� B� G� B

p
2
664

3
775 if B[G

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

S ¼ 1� 3�minðR;G;BÞ
ðR;G;BÞ if I[ 0; or

0 if I ¼ 0

8<
: ð3Þ

The CMYK color space is subtractive in nature and con-

sists of four color components [cyan (C), magenta (M),

yellow (Y), and key or black (K)]. The color components

of the CMYK color model were derived from RGB color

components using the following equations (Agrawal et al.

2011).

C ¼ max(R;G;B)� R

max(R;G;BÞ ð4Þ

M ¼ max(R;G;B)� G

max(R;G;BÞ ð5Þ

Y ¼ max(R;G;B)� B

max(R;G;BÞ ð6Þ

K ¼ 1�maxðR; G; BÞ ð7Þ

The Lab color space portrays all discernible colors math-

ematically using the three measurements (L, a and b). The

Lab color space has three components: L (lightness), a

(green–red), and b (blue–yellow). The Lab color space

incorporates all the colors recognize by a human being.

Fig. 3 Typical Image of a coal sample from four different angles

Fig. 4 Images of coal samples after segmentation
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The color components of Lab color space cannot be

derived directly from the RGB color model but can be

derived from xyz color space using the following equations

(Häfner et al. 2012).

L ¼
116

y

yn

� �1
3

�16 if
y

yn
[ 0:008856

903:3
y

yn

� �
Otherwise

8>>><
>>>:

ð8Þ

a ¼ 500 f
x

xn

� �
� f

y

yn

� �� �
ð9Þ

b ¼ 200 f
y

yn

� �
� f

z

zn

� �� �
ð10Þ

The xyz color model consists of three color components x,

y, and z. The color components of xyz color model can be

extrapolated from the RGB color model. The color com-

ponent y implies luminance, z is to some degree equivalent

to blue, and x is a blend of cone reaction curves been

orthogonal to luminance and non-negative. The transfor-

mation matrix can be done using the following way

(Karungaru et al. 2004).

x
y
z

2
4
3
5 ¼

0:412453 0:357580 0:180423
0:212671 0:715160 0:072169
0:019334 0:119193 0:950227

2
4

3
5 f ðRÞ

f ðGÞ
f ðBÞ

2
4

3
5

ð11Þ

The function f(C e R, G, B) can be determined as

f ðCÞ ¼

C

12:92
; if C� 0:04045

C þ 0:055

1þ 0:055

� �2:4

; otherwise

8>><
>>:

In the RGB color model, R color component has the

highest wavelength of all the three colors, and G color

component has the least wavelength. The green color also

gives the highest relieving impact on the eyes. The Gray

color image can be derived using the following equation

(Gonzalez and Woods 2008).

Grayscale image ¼ 0:2989Rþ 0:5870Gþ 0:1140B ð12Þ

Images of 17 color components derived from RGB color

space image are shown in Fig. 5.

2.4.2 Texture feature extraction

The intensity (I) colour component of HSI color space was

transformed into four frequency domain viz. discrete

cosine transform (DCT), discrete Fourier transform (DFT),

discrete wavelet transform (DWT), Gabor filter transform.

DCT represents an image as a summation of sinusoids of

varying magnitude and frequencies. DCT has the property

that the information of a regular image can be packed in the

couple of coefficients of the DCT. The two-dimensional

DCT of a matrix A (size: MxN) can be characterized as

follows (Ahmed et al. 1974):

f ðu; vÞ ¼ apaq
XM�1

m¼0

XN�1

n¼0

Amn cos
pð2mþ 1Þp

2M
cos

pð2nþ 1Þq
2N

ð13Þ

where

ap ¼

1ffiffiffiffiffi
M

p if p ¼ 0ffiffiffiffiffi
2

M

r
if 1� p�M � 1

8>><
>>:

ð14Þ

aq ¼

1ffiffiffiffi
N

p if q ¼ 0ffiffiffiffi
2

N

r
if 1� q�N � 1

8>><
>>:

ð15Þ

The functions f(u, v) are known as the DCT coefficients of

A.

DFT is an important tool for image processing, which is

used to decompose an image into its sine and cosine

components. The input image (spatial domain) is trans-

formed into the frequency domain. The frequency infor-

mation of DFT can be useful for object recognition. DFT

transform of the spatial domain image can be done using

the following equation (Tang and Stewart 2000).

DFTðu; vÞ ¼ 1

M � N

XM�1

x¼0

XN�1

y¼0

f ðx; yÞe�j2p u
Mxþ v

Nyð Þ ð16Þ

where f(x, y) represents the pixel value of an image, and the

exponential term is the basis function corresponding to

each point DFT (u, v) in the Fourier space.

The directional information can be captured along with

frequency details and space using the DWT. DWT is used

to decompose the image into different resolution sub-im-

ages for separating the high-frequency from the low-fre-

quency components of the image (Murtagh and Starck

2008). The first level of decomposition of an image using

low (L) and high (H) pass filter provides four sub-images.

The four sub-images represent the approximate coefficient

(dA), the detailed coefficient in the horizontal direction

(dH), the vertical direction (dV), and diagonal direction

(dD) respectively.

In image processing, a Gabor filter is a linear filter uti-

lized for texture analysis. The Gabor filter is used for multi-

resolution texture feature extraction. Gabor filters are

known as directional bandpass filters due to orientation and

frequency selective properties (Manjunath and Ma 1996).

In the present study, only one resolution in four directions

(0�, 45�, 90�, and 135�) was considered for features
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extraction. Images of 11 frequency transform coefficient

derived from the intensity component image are shown in

Fig. 6.

Thus, for each captured image of the coal sample, a

different image was produced correspond to 17 colour

component and 11 frequency transform coefficients. That

is, the image features were separated by changing the

images into various color spaces and frequency domains. In

this present investigation, 10 statistical parameters (mini-

mum, maximum, mean, skewness, kurtosis, variance,

standard deviation, moments of third, fourth and fifth

order) were extracted from each each of the 17 colour

components and 11 frequency transform images for model

development.

The statistical parameters of a typical image ‘I’ of M9N

size corresponding to a specific color component or fre-

quency domain can be determined as:

fMinimum ¼ min
x½1;...M�
y½1;...;N�

pðx; yÞ ð17Þ

fMaximum ¼ max
x 1;...;M½ �
y 1;...;N½ �

pðx; yÞ ð18Þ

fMean ¼
1

M � N

XM
x¼1

XN
y¼1

pðx; yÞ ð19Þ

fVariance ¼
1

M � N

XM
x¼1

XN
y¼1

pðx; yÞ � fmeanj j2 ð20Þ

fStandard�Deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fVariance

p
ð21Þ

fMomentk ¼
1

M � N

XM
x¼1

XN
y¼1

pðx; yÞ � fmeanð Þk for k ¼ 3; 4; 5

ð22Þ

fSkewness ¼
fmoment3

fStandard�Deviationð Þ3
ð23Þ

fKurtosis ¼
fmoment4

fStandard�Deviationð Þ4
ð24Þ

where p(x, y) represent the pixel value at x, y coordinate.

Ten statistical parameters were derived for each of the

17 colour component images and 11 frequency transform

coefficients. Thus, the total number of features extracted

from each image was 280 (= 10917 ? 10911). In colour

feature extraction, 17 colour components and 10 statistical

parameters are used, and hence the total number of colour

features considered was 170. On the other hand, in texture

feature extraction, 11 texture features and 10 statistical

parameters are used, and thus the total number of texture

features considered was 110. A total of 80 images were

captured for different coal samples. From 80 images, a total

of 22,400 (= 809280) image features were derived

Fig. 5 Images of different color components of a typical coal sample a red-R b green-G c blue-B d hue-H e saturation-S f intensity-I g cyan-C

h magenta-M i yellow-Y j key or black-K k lightness/luminance-L l Color Opponents Green–Red -a m Color Opponents Blue–Yellow-b

n Spectral response values corresponding to the Red-x o Spectral response values corresponding to the Green-y p Spectral response

values corresponding to the Blue-z q Gray
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corresponding to 17 colour components and 11 frequency

transform coefficients. The list of features and their unique

ID is summarized in Table 2.

2.5 Laboratory analysis

2.5.1 Preparation of coal samples

Coal samples collected from mines are crushed and

screened through 72 mesh (211 microns) sieve. The

screened samples are stored in the sealed airtight glass

bottles with their unique sample ID. These coal samples are

used in the proximate analysis in the laboratory for esti-

mating the compositions.

2.5.2 Proximate analyses of coal

The proximate analysis of coal was done to measure the

moisture content (MC), volatile matter (VM), ash (Ash)

content, and fixed carbon (FC) content in coals. The

methods of determination of these four components are

explained below:

(1) Determination of moisture content (MC)

Moisture represents the water exists in the coal samples.

The MC in a coal sample can be determined by observing

the weight losses of collected coal samples due to the

release of the contained water within the chemical structure

of the coal in a controlled condition. If the initial weight of

the coal sample is Wi and the weight after removing water

content is Wf, then the moisture content in the coal can be

determined as:

Moisture content % ðMC) ¼ Weight loss

Weight sample

� �
� 100

¼ Wi �Wf

Wi

� �
� 100

ð25Þ

Fig. 6 Typical images of different frequency transform coefficients derived from Intensity component image a DCT coefficient b DFT

coefficient of real component c DFT coefficient of imaginary component d approximate coefficient of DWT e detailed coefficient in horizontal

direction of DWT f detailed coefficient in vertical direction of DWT g detailed coefficient in diagonal direction of DWT h Gabor filter transform

coefficient in 0� direction i Gabor filter transform coefficient in 45� direction j Gabor filter transform coefficient in 90� direction k Gabor filter

transform coefficient in 135� direction
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(2) Determination of volatile matter (VM)

VM present in coal can be liberated at high temperature in the

absence of oxygen. The amount of VM in a coal sample can be

determined bymeasuring the weight loss of coal sample due to

heating under controlled conditions to drive off the contained

water, vapor, and gases exist within the coal sample minus

moisture content. The actualVM is acquired by subtracting the

MC of the sample using the following equation.

Volatile matter % ðVMÞ ¼ Weight loss due to heating

Weight of sample

� �

� 100�MC

ð26Þ

(3) Determination of ash content

The residue left after burning of coal is referred to as ash.

The residue left after burning mainly contains the inorganic

substances. The ash content percentage in the coal sample

can be determined as:

Ash % ðAshÞ ¼ Weight of residue

Weight of sample

� �
� 100 ð27Þ

(4) Determination fixed carbon (FC)

FC in coal is referred to as carbon content, which is not

combined with any other components. The percentage of

FC can be determined by subtracting the percentages of

MC, VM, and Ash from the percentage of original weight

(100%) of the coal sample. It can be represented as:

Fixed carbon % ðFCÞ ¼ 100� ðMC%þ Ash%þ VM%Þ
ð28Þ

2.6 Feature selection

The processing time of the model increases with the

increase in the number of features. The higher processing

time increases the computational cost. Furthermore, the

performance and complexity of a model are highly

dependent on the feature dimensions (Liu et al. 2005). It

may be possible that the extracted feature set includes

irrelevant and redundant features. The performance of the

model may reduce due to consideration of the irrelevant

and redundant features (Bratu et al. 2008). Thus, the rele-

vant features need to identify using a suitable feature

selection method before the model run. Many feature

selection/reduction techniques like principal component

analysis (PCA), genetic algorithm (GA), sequential for-

ward floating selection (SFFS), etc. have been developed

and used in various studies (Marcano-Cedeno et al.

2010; Murata et al. 2015; Pudil et al. 1994). The present

study used a stepwise selection method for the selection

of the relevant features (Heinze et al. 2018). In the

stepwise selection method, all the extracted features

considered as independent variables and the individual

coal characteristics value as the dependent variable. At

each step, an independent variable is added or subtracted

based on the pre-specified criteria. This is done using the

F-test criteria. The process requires to define two signif-

icance levels, one for adding variable and other for

removing variables. Thus, before the model development,

an optimized feature subset was identified. The optimized

feature subsets for each coal characterisation parameter

are summarised in Sect. 3.

2.7 Development of artificial neural network (ANN)

model for prediction of coal characteristics

The non-linear nature of the relationship between input and

output can be mapped using various types of regression

models. The model development was done using the

optimized feature subset as input parameters, and the cor-

responding coal characteristic is the output parameter. The

optimized feature subset may be different for different coal

characteristics (MC, VM, Ash, and FC) and thus, four

different models were developed for prediction of four

characteristics parameters. In the present study, a machine

vision system based on the ANN model was developed for

automated coal characterisation.

In the first step of ANN model development, all the

model parameters (synaptic weight, input features, and

outputs) need to be initialized. The values of all the input

features along with the output parameters were normalized

in the range of 0–1 before using in the model. The nor-

malization process increases the training speed and reduces

the noise in the data. The normalization of the data was

done using the following Eq. (1):

The next step of the model development is the selection of

network architecture. The present study used a feed-for-

ward artificial neural network (FF-ANN) model for map-

ping the image features to quantify the object

Normalized value of i th sample of j th parameter ¼ Observed value of i th sample of j th parameter �minimum value of j th parameter

Maximum value of j th parameter�minimum value of j th parameter

ð29Þ

746 A. K. Gorai et al.

123



characteristics. The architecture of the model network is

shown in Fig. 7. In Fig. 7, the number of the input

parameter and the number of node in the hidden layer are

respectively M and N. The number of the input parameter

of the model is the number of selected features. For each of

the four coal characteristics (MC, VM, FC, and Ash), the

number of optimized features derived separately, and thus,

the numbers may be different. Therefore, a different model

was developed for each output of coal characteristics. The

detailed description of the selection of the optimized fea-

tures is given in Section 2.6. The number of output

parameter considered for each model is one. The model

development was done using Neural Network Toolbox of

MATLAB R2015b software.

In the model, the data is processed through nodes or

neuron from one layer to another layer. The data is pro-

cessed from the input layer to the output layer via the

hidden layers. All the model parameters were then initial-

ized with random initialization of synaptic weights. A

synaptic weight was randomly assigned to each connection

to define the relationship strength between nodes. The

hidden layer output of the jth node, yj is given as

yj ¼ f
Xn
i¼1

WijXi þ bj

 !
ð30Þ

where Xi is the input received at node j, Wij is the con-

nection weight of the pathway between the ith input node

and jth hidden node, n is the aggregate number inputs to

node j, and bj is the bias term in the hidden layer. f rep-

resents the activation function that gives the response of a

node of the aggregated input signal. The present study used

a sigmoid transfer activation function. It is given by

f ðxÞ ¼ 1

1� e�x
ð31Þ

A sigmoid activation function is continuous and differen-

tiable in nature. It can map the nonlinear relationship.

The next step is the determination of the output layer.

The predicted output, of the kth node, Pk can be determined

using the following equation.

Pk ¼
Xl
j¼1

Wjkyj þ bk ð32Þ

where yj is the response of hidden node, j, Wjk represents

the weight of the pathway links between the j th hidden

node and a k th output node, l is the aggregate number

inputs to node k, and bk is the bias term in the output layer.

The next step is to determine the error. In the proposed

algorithm, the pattern of each input of the training dataset

was passed from the input layer to the output layer via the

hidden layer. The system predicted outputs for every input

pattern of the dataset and compared with the targets to

determine the error level. It can be determined from the

predicted values and target values using the following

equation.

E ¼
X
m

Pk � Okð Þ2 ð33Þ

where Pk is the predicted output, and Ok is the

observed/target output. m is the number of output or

training patterns.

In back propagation feed forward neural network, the

path weights (Wij and Wjk) are updated iteratively based on

the error value. These are updated until the error level

reached to the desired value.

Fig. 7 Architecture of the feed-forward artificial neural networks (FF-ANN)
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In the current study, the model was developed with one

hidden layer. The model was also tested for a distinctive

number of hidden neurons for optimizing the performance

of the models. Four different models were developed for

prediction of four coal characteristic parameters. The

models were evaluated using the selected feature subset as

input and the corresponding coal characteristic parameter

as the output. Data partitioning for training and testing of

the model is one of the most important tasks of the model

development. It is always desired that both the datasets

(training and testing) should have a similar type of distri-

bution. In the current study, a k-holdout method was

adopted for the random partitioning of the data into training

and testing in the ratio 75:25. That is, the 80 datasets

divided into 60 and 20 respectively for training and testing.

The distributions of both the datasets were examined using

a paired t test. The results confirmed that both the datasets

follow a similar distribution at a 5% significance level for

each feature. The network used a Levenberg–Marquardt

(LM) based back propagation learning algorithm to adjust

the weights. A logistic sigmoid nonlinear function (logsig)

was used to connect the input layer to hidden layer;

whereas, a linear transfer function (purelin) was used to

connect the hidden layer to the output layer.

2.8 Model evaluations

The models created utilizing a neural network regression

algorithm require cross-validation before implementation.

Previously, numerous model execution parameters were

recommended and utilized for the assessment of the

regression model.

The assessment of the regression model was directed

utilizing mentioned indices parameters. These are mean

squared errors (MSE), root mean squared error (RMSE),

normalized mean squared error (NMSE), R-squared (R2),

and bias. All the indices were determined from the

observed and predicted values of testing samples using the

following equations.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

pi � oið Þ2
s

ð34Þ

Table 3 Experimental values of moisture content, volatile matter, ash content and fixed carbon content

Sample No. Moisture content, MC (%) Volatile matter, VM (%) Ash content, Ash (%) Fixed carbon content, FC (%)

S01 5.68 27.59 41.70 25.01

S02 6.61 29.27 32.31 31.80

S03 6.18 30.12 32.38 31.30

S04 6.96 30.18 33.30 29.55

S05 5.33 24.16 46.13 24.36

S06 8.74 10.10 15.08 66.07

S07 5.13 26.92 36.27 31.66

S08 6.13 33.21 20.08 40.57

S09 5.91 35.89 20.81 37.37

S10 7.68 41.51 17.89 32.90

S11 4.81 39.74 16.95 38.48

S12 3.36 34.40 22.03 40.20

S13 4.29 28.64 25.79 41.28

S14 4.24 29.88 21.56 44.32

S15 3.91 28.49 22.57 45.03

S16 2.02 33.74 16.61 47.63

S17 2.39 30.75 28.19 38.67

S18 5.32 29.11 29.83 35.74

S19 4.93 27.69 21.02 46.36

S20 4.16 24.78 29.34 41.72

Minimum 2.02 10.10 15.08 24.36

Maximum 8.74 41.51 46.13 66.07

Mean ± SD 5.19 – 1.66 29.81 – 6.44 26.49 – 8.60 38.50 – 9.33

Bold values reflected the data description analysis results
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Table 4 Optimized feature subset obtained by step-wise linear regression algorithm for four parameters

Feature index number Feature name (component) Color/texture space

Moisture content (MC)

IF60 Moment of 5th order of ‘S’ color component HSI Color Space

IF83 Mean of ‘a’ color component Lab Color Space

IF217 Kurtosis of detailed coefficient in horizontal direction DWT Coefficient

IF183 Mean of discrete cosine transform coefficient DCT Coefficient

IF131 Minimum of ‘K’ color component CMYK Color Space

IF169 Moment of 4th order of ‘z’ color component xyz Color Space

IF111 Minimum of ‘M’ color component CMYK Color Space

IF7 Kurtosis of ‘R’ color component RGB Color Space

IF9 Moment of 4th order of ‘R’ color component RGB Color Space

IF62 Maximum of ‘I’ color component HSI Color Space

IF172 Maximum of sine component of image DFT Coefficient

IF125 Standard Deviation of ‘Y’ color component CMYK Color Space

Ash content (Ash)

IF81 Minimum of ‘a’ color component Lab Color Space

IF22 Maximum of ‘B’ color component RGB Color Space

IF56 Skewness of ‘S’ color component HSI Color Space

IF32 Maximum of ‘Gray’ color component Gray Color Space

IF148 Moment of 3rd order of ‘x’ color component xyz Color Space

IF158 Moment of 3rd order of ‘y’ color component xyz Color Space

IF128 Moment of 5th order of ‘Y’ color component CMYK Color Space

IF176 Skewness of sine component of image DFT Coefficient

IF223 Mean of detailed coefficient in vertical direction DWT Coefficient

IF55 Standard deviation of ‘S’ color component HSI Color Space

IF162 Maximum of ‘z’ color component xyz Color Space

IF59 Moment of 4th order of ‘S’ color component HSI Color Space

IF197 Kurtosis of discrete cosine transform coefficient DCT Coefficient

IF261 Minimum of Gabor filter transform coefficient in 90� direction Gabor filter transform

IF277 Kurtosis of Gabor filter transform coefficient in 135� direction Gabor filter transform

IF62 Maximum of ‘I’ color component HSI Color Space

IF239 Moment of 4th order of detailed coefficient in diagonal direction DWT Coefficient

IF191 Minimum of discrete cosine transform coefficient DCT Coefficient

Volatile matter content (VM)

IF213 Mean of detailed coefficient in horizontal direction DWT Coefficient

IF152 Maximum of ‘y’ color component xyz Color Space

IF90 Moment of 5th order of ‘a’ color component Lab Color Space

IF117 Kurtosis of ‘M’ color component CMYK Color Space

IF57 Kurtosis of ‘S’ color component HSI Color Space

IF237 Kurtosis of detailed coefficient in diagonal direction DWT Coefficient

IF171 Minimum of sine component of image DFT Coefficient

IF32 Maximum of ‘Gray’ color component Gray Color Space

IF56 Skewness of ‘S’ color component HSI Color Space

IF261 Minimum of Gabor filter transform coefficient in 90� direction Gabor filter transform

IF94 Variance of ‘b’ color component Lab Color Space

IF222 Maximum of detailed coefficient in vertical direction DWT Coefficient

Fixed carbon content (FC)

IF10 Moment of 5th order of ‘R’ color component RGB Color Space

IF128 Moment of 5th order of ‘Y’ color component CMYK Color Space
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MSE ¼ 1

n

Xn
i¼1

pi � oið Þ2 ð35Þ

NMSE ¼ 1

n

Xn
i¼1

pi � oið Þ2

�pi �oi
ð36Þ

R2 ¼
Pn

i¼1 pi � �pið Þ oi � �oið Þ
� �2

Pn
i¼1 pi � �pið Þ2

Pn
i¼1 oi � �oið Þ2

ð37Þ

BIAS ¼ 1

n

Xn
i¼1

pi � oið Þ ð38Þ

where pi and oi represents the predicted and observed

values of the ith sample, respectively. �p1 and �o1 respec-

tively represents the mean of predicted and observed values

of all the samples. These values can be determined as

�pi ¼
1

n

Xn
i¼1

pi and �oi ¼
1

n

Xn
i¼1

oi

RMSE is a measure of the spread of the residuals. It tells

about the deviations of the observed data from the best fit

line. The mean squared errors of prediction (MSE) is the

measure of the average of the squares of the errors between

the observed data and the predicated data. The NMSE is an

estimator of the general deviations amongst anticipated and

estimated values. The R2 is the measure of change of the

prediction from observed. The higher the measure repre-

sents, the better is the prediction model. For a perfect

model, R2 esteem ought to be 1. In the model assessment,

the bias value represents the normal deviation of the

predicted value from the observed. The bias of a model can

be positive or negative.

3 Results and discussion

The images of the coal samples were captured in a con-

trolled environment for further analysis. The total number

of coal samples used in the study was 20. Four images were

captured for each coal sample from four different angles,

and thus, the total number of images captured for the model

development was 80. Coal samples corresponding to each

image were analyzed in the laboratory for characteriza-

tions. The estimated coal characteristics values were used

for model calibrations. The samples were analysed using

the proximate method. The proximate analyses of 20 coal

samples were conducted to determine the MC, VM, Ash,

and FC. The experimental results, which were obtained in

the laboratory from the proximate analysis, are summarized

in Table 3. The results indicate that the mean values of

MC, VM, Ash, and FC are respectively 5.19%, 29.81%,

26.49%, and 38.50%. The range of the MC, VM, Ash, and

FC percentage are respectively 2.02–8.74, 10.10–41.51,

15.08–46.13, and 24.36–66.07. The result further indicates

that the samples collected have a wide variation in coal

characteristics, which supports the need for a suit-

able quality monitoring system in the mine.

To develop the model, 280 image features were

extracted from each image. These feature include 10 sta-

tistical features for each component of color space (R, G,

Table 4 continued

Feature index number Feature name (component) Color/texture space

IF62 Maximum of ‘I’ color component HSI Color Space

IF226 Skewness of detailed coefficient in vertical direction DWT Coefficient

IF57 Kurtosis of ‘S’ color component HSI Color Space

IF44 Variance of ‘H’ color component HSI Color Space

IF9 Moment of 4th order of ‘R’ color component RGB Color Space

IF235 Standard deviation of detailed coefficient in diagonal direction DWT Coefficient

IF177 Kurtosis of sine component of image DFT Coefficient

IF49 Moment of 4th order of ‘H’ color component HSI Color Space

IF239 Moment of 4th order of detailed coefficient in diagonal direction DWT Coefficient

IF56 Skewness of ‘S’ color component HSI Color Space

IF219 Moment of 4th order of detailed coefficient in horizontal direction DWT Coefficient

IF43 Mean of ‘H’ color component HSI Color Space

IF251 Minimum of Gabor filter transform coefficient in 45� direction Gabor filter transform

IF91 Minimum of ‘b’ color component Lab Color Space

IF242 Maximum of Gabor filter transform coefficient in 0� direction Gabor filter transform

IF86 Skewness of ‘a’ color component Lab Color Space
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B, H, S, I, x, y, z, C, M, Y, K, L, a, b, and Gray) and

frequency transform coefficients (coefficient of DCT, sine

component of DFT, cosine component of DFT, approxi-

mate coefficient of DWT, detailed coefficient of DWT in

the horizontal direction, detailed coefficient of DWT in the

vertical direction, detailed coefficient of DWT in the

diagonal direction, and Gabor filter transform coefficient in

0� direction, Gabor filter transform coefficient in 45�
direction, Gabor filter transform coefficient in 90� direc-

tion, Gabor filter transform coefficient in 135� direction).

The present study used 80 images of coal samples for

features extraction. A total of 17 color component images

were derived from each of the originally captured images.

The images corresponding to the intensity component of

HSI color space was used for texture feature extractions

using four frequency domains (DCT, DFT, DWT, and

Gabor filter).

To identify the relevant features for estimating the coal

characteristics, a step-wise linear regression algorithm was

used. It was observed that the number of optimized features

derived using the step-wise linear regression algorithms

was 12, 12, 18, and 18, respectively, for MC, Ash, VM, and

Table 5 Predicted results of testing samples of various parameters of

ANN models

Sample No. MC (%) VM (%) Ash (%) FC (%)

S01 5.63 22.39 29.81 28.74

S02 7.42 24.91 28.88 32.37

S03 8.11 33.58 26.61 32.20

S04 6.95 30.55 28.76 28.96

S05 5.60 26.87 36.79 27.30

S06 10.27 2.79 12.26 60.89

S07 5.75 26.39 27.81 29.02

S08 6.34 31.29 17.77 42.77

S09 5.61 39.16 15.76 41.29

S10 7.15 48.41 12.33 34.38

S11 5.25 44.99 14.60 37.72

S12 4.13 39.30 18.39 41.31

S13 3.93 29.83 19.96 42.76

S14 5.15 32.08 15.67 46.50

S15 4.28 31.07 15.67 40.57

S16 2.97 33.39 11.79 40.20

S17 2.95 30.42 21.81 43.24

S18 4.29 26.17 21.18 39.66

S19 4.35 25.65 20.95 44.66

S20 4.43 24.86 25.24 42.07

Minimum 2.95 2.79 11.79 27.30

Maximum 10.27 48.41 36.79 60.89

Mean ± SD 5.53 – 1.80 30.21 – 9.38 21.10 – 6.98 38.83 –
7.92

Bold values reflected the data description analysis results

Fig. 8 Observed versus predicted value of testing dataset of ANN

Model a FC % b Ash % c VM % d MC %
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FC. It was observed that the number of features was not

fully depended on the variability or standard deviation

(SD) of the data (shown in Table 3). The SD values for

Ash, VM, FC, and MC are 8.6, 6.44, 9.33, and 1.66,

respectively. It was observed that the order of the number

of selected features (FC[Ash[VM[MC) is partially

consistent with the order of SD value (FC = Ash[
VM = MC). This may be due to the non-linear nature of

the relationship between the input and output. Thus, for the

development of four characteristics parameters, four dif-

ferent optimized feature subsets were derived. The image

features in the order of most relevant for four prediction

models are summarized in Table 4.

The ANN models were developed using the optimized

feature subset as input and the corresponding coal char-

acteristics as the output. A different model was run for each

parameter. Thus, 4-ANN models were developed for pre-

diction of ash content, moisture content, fixed carbon, and

volatile matter. The number of neurons in the hidden layers

in each network system was also optimised for each model

to obtain the best output. The optimized numbers of nodes

in the hidden layers were derived as 6, 14, 37, and 34,

respectively, for FC, Ash, VM, and MC prediction model.

The features extracted belong to different ranges and

therefore normalized in the range of 0–1 for the fast con-

vergence and better performance of the model.

Each model used 80 datasets for training and testing of

the model. The number of datasets used for training and

testing is 60 and 20, respectively. The predicted values of

testing samples for four different parameters are summa-

rized in Table 5. The predicted values indicate that the

mean values of MC, VM, Ash, and FC are respectively

5.53%, 30.21%, 21.10%, and 38.83% as compared to the

observed values of 5.19%, 29.81%, 26.49%, and 38.50%.

The range of the predicted values of the testing samples for

MC, VM, Ash, and FC percentage are respectively

2.95–10.27, 2.79–45.81, 11.79–36.79, and 27.30–60.89. To

determine the relationship between the observed values and

predicted values of the testing samples, scatter plots for

each coal characteristics parameters were drawn. These are

represented in Fig. 8. The regression equation and R2

values were determined from scatter plots, as shown in

Fig. 8. It can be easily inferred from Fig. 8 that the pre-

dicted values are closely matched to the observed values.

The performance measure of each ANN model was

analysed using four indices: RMSE, MSE, bias, NMSE,

and R2. All the indices were determined from the predicted

and observed values of the testing samples using Eqs. (4)–

(8). The results shown in Table 6 indicate that the NMSE

value is close to zero in each case. At the same time, the R2

values were found to be 0.89, 0.92, 0.92, and 0.84

respectively, for fixed carbon percentage, ash content per-

centage, volatile matter content percentage, moisture con-

tent percentage. The R2 values of a perfect prediction

model should be equal to 1. In the present case, the R2

value indicates that the model predicted values are highly

correlated with the observed values for FC and VM, but the

correlation values are found to satisfactory for Ash and MC

prediction models. The bias values of the models indicate

that the models perform with little under prediction. The

higher MSE and RMSE values of the models indicate the

higher variance of the data and not the poor prediction.

Table 6 Performance measure indices of ANN models for prediction

of four parameters

Item RMSE MSE BIAS NMSE R2

ANN model

FC 3.19 10.17 - 0.33 0.01 0.89

Ash 6.02 36.32 5.39 0.06 0.91

VM 3.59 12.93 - 0.39 0.01 0.92

MC 0.78 0.60 - 0.34 0.02 0.84

Table 7 Comparative values of model performance indices for each

parameter

Item RMSE MSE BIAS NMSE R2

ANN model

FC 3.19 10.17 - 0.33 0.01 0.89

Ash 6.02 36.32 5.39 0.06 0.91

VM 3.59 12.93 - 0.39 0.01 0.92

MC 0.78 0.60 - 0.34 0.02 0.84

GPR model

FC 3.52 12.40 - 0.18 0.00 0.85

Ash 2.94 8.63 - 1.08 0.01 0.90

VM 2.58 6.70 0.40 0.01 0.87

MC 0.96 0.93 - 0.06 0.03 0.68

SVR model

FC 5.12 26.24 0.28 0.02 0.76

Ash 4.27 18.25 0.44 0.03 0.75

VM 3.64 13.23 0.24 0.01 0.70

MC 0.95 0.90 - 0.05 0.03 0.66

RBNN model

FC 5.13 26.33 - 0.82 0.02 0.69

Ash 4.69 22.01 - 0.83 0.03 0.80

VM 3.18 10.13 - 0.47 0.01 0.76

MC 0.95 0.90 - 0.05 0.03 0.68
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4 Comparative performance analysis of ANN
model and GPR model

The performance of the proposed neural network model

was also compared with the performances of Gaussian

process regression (GPR), support vector regression (SVR),

and radial basis neural network (RBNN) models. GPR

models are nonparametric kernel-based probabilistic mod-

els. In the past, the GPR modelling approach has been used

for many engineering solutions (Archambeau et al. 2007;

Atia et al. 2012; Chen et al. 2014). The detailed modeling

approach can be found in Williams and Rasmussen (1996).

The same optimized features (which were derived corre-

sponding to four parameters) were used as input in each

model. The value of the optimized features along with the

estimated coal characteristics, was normalized in the range

of 0–1. The Kullback–Leibler optimal approximation (KL)

inference method was used in model development. The

goal of the SVR was to identify a function for which all the

training patterns or dataset can have a maximum deviation,

e from the target values and at the same time the flatness

should be as high as possible (Patel et al. 2019). A RBNN

is special kind of artificial neural networks allowing

training the model fast. In RBNN, each neuron receipts

weighted sum of its input values. Then the activation of

each neuron is applied which depends on the euclidean

distance between a pattern and the neuron center (Valls

et al. 2005).

To check the model performance, the same numbers of

training and testing samples (as used in the ANN models)

were used. That is, 60 samples were used for training, and

the rest 20 samples were used for testing of the models.

The comparative model performance results are shown in

Table 7. The results indicate that the corresponding R2

values are higher, and the RMSE values are lower for the

ANN model in each case. This indicates the ANN-based

models predicted the values of four characteristics param-

eters more closely to the experimental values than the

GPR, SVR and RBNN based models. Thus, it can be

inferred from the results that the ANN model performs

better than the GPR, SVR, and RBNN model in most of the

cases.

5 Conclusions

The following conclusions were derived from the study

results:

(1) A different set of optimized features were derived

for four ANN models used for ash, VM, FC,

Moisture content prediction. It was observed that

the optimised feature subset consists of both the

color and texture-based features.

(2) The proposed model will help in automated coal

characterization with the precision of more than

80%.

(3) The comparative study results indicated that the

artificial neural network (ANN) model performs

better than the Gaussian process regression (GPR)

model in coal characterisation.

(4) It can be inferred from the results that the model

requires a different set of optimised image features

set for prediction of ash, VM, FC, and MC

predictions.

(5) The feature selection algorithm is linear in nature,

and thus, a non-linear feature selection can improve

the performance of the model.

Acknowledgements This research work was carried out at NIT

Rourkela. Authors are acknowledged to NIT Rourkela for all types of

financial and administrative supports for conducting the study.

Compliance with ethical standards

Conflict of interest The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Agrawal S, Verma NK, Tamrakar P, Sircar P (2011) Content based

color image classification using SVM. In: 2011 Eighth interna-

tional conference on information technology: new generations

(IEEE), pp 1090–1094

Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform.

IEEE Trans Comput C-23(1):90–93

Alpana, Mohapatra S (2016) Machine learning approach for auto-

mated coal characterization using scanned electron microscopic

images. Comput Ind 75:35–45

Al-Thyabat S, Miles NJ (2006) An improved estimation of size

distribution from particle profile measurements. Powder Technol

166(3):152–160

Archambeau C, Cornford D, Opper M, Shawe-Taylor J (2007)

Gaussian process approximations of stochastic differential

equations. J Mach Learn Res 1:1–16

Atia MM, Noureldin A, Korenberg M (2012) Enhanced Kalman filter

for RISS/GPS integrated navigation using Gaussian process

regression. In: Proceedings of the conference ‘‘Institute of

Design and development of a machine vision system using artificial neural network-based… 753

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Navigation International Technical Meeting 2012 (ITM 2012)’’,

Newport Beach, California, USA 30 January–1 February 2012,

pp 1148–1156

Bratu CV, Muresan T, Potolea R (2008) Improving classification

accuracy through feature selection. In: 4th int. conf. intell.

comput. commun. process., IEEE, 2008: pp 25–32. https://doi.

org/10.1109/iccp.2008.4648350

Chatterjee S, Bhattacherjee A (2011) Genetic algorithms for feature

selection of image analysis-based quality monitoring model: an

application to an iron mine. Eng Appl Artif Intell 24(5):786–795

Chatterjee S, Bhattacherjee A, Samanta B, Pal SK (2010) Image-

based quality monitoring system of limestone ore grades.

Comput Ind 61(5):391–408

Chen HM, Cheng XH, Wang HP (2014) Dealing with observation

outages within navigation data using Gaussian process regres-

sion. J Navig 67:603–615

Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn.

Prentice Hall
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