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Abstract Determining scale and variable effects have critical importance in developing an energy resource policy. This

study aims to explore the relationships in heterogeneous lignite sites using different scale models, spatial weighting as well

as error-based pair-wise identification. From a statistical learning framework, the relationships among the quality variables

such as geochemical variables and the contributions of the coordinates to quality measures have been exhibited by

generalized additive models. In this way, the critical roles of spatial weights provided by the coordinates have been

specified at a global scale. The experimental studies reveal that incorporating the geological weighting in the models as the

additional information improves both accuracy and transparency. Because relationships among lignite quality variables and

sampling locations are spatially non-stationary, the local structure and interdependencies among the variables were ana-

lyzed by geographically weighting regression. The local analyses including spatial patterns of bandwidths, search domains

as well as residual-based areal dependencies provided not only the critical zones but also availability of pair-wise model

alternatives by calibrating a model at each point for location-specific parameter learning. The results completely show that

the weighting models applied at different scales can take spatial heterogeneity into consideration and these abilities provide

some meta-data and specific information using in sustainable energy planning.

Keywords Lignite � Distance effect � Exploration � Generalized Additive Model (GAM) � Geographically Weighted

Regression (GWR)

1 Introduction

The sustainability of an economic development directly

related with resource planning. As one of the primary

energy resources, lignite still has paramount importance

due to its public and industrial usage along with the envi-

ronmental sustainability. Therefore, performing lignite

inventory analysis and providing reliable information

directly from the sites maintain its prominence

(Schweinfurth 2009). From an energy resources policy,

lignite has global heterogeneous bedding structure in earth.

For this reason, the studies on lignite reserves and quality

parameters have generally been performed at global scale

(Siddiqui et al. 2018). This perspective conceals the

understanding of small scale variability and providing

useful information at local scale.

The quantification of spatial relationships is the main

preliminary operations for mine investment, technological

planning as well as environmental impact assessment

(Galetakis and Vamvuka 2009). The effects of lignite

quality variables on calorific value, which are of primary

interest in lignite inventory estimation, are arguably space

invariant. On the other hand, an important spatial hetero-

geneity in lignite sites may be recorded in practice and this

characteristic requires applying spatial search methodolo-

gies (Chuai and Feng 2019).
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Lignite data comprise of both attributions and locational

information (Gabrosek and Cressie 2010). Based on the

geographical information (coordinates) and observable

characteristics such as thickness and calorific value, many

reserve estimation methodologies have been suggested in

coal inventory evaluation. One of these approaches, the

researchers practiced an uncertainty-oriented kriging

model for lignite reserves (Pavlides et al. 2015). In a dif-

ferent study, a software based algorithm suggested for

handling well-log data to estimate the proximate parame-

ters of coal beds. As a result of this, a GIS-based infor-

mation system was suggested (Mert and Dag 2015). In

general, investigations and decisions incorporating energy

sources are generally characterized via high complexities.

To appraise the uncertainties and control of quality,

recently an efficient scale-based resource model has been

developed (Yüksel et al. 2017).

Due to the limitations of conventional methods in

identifying scale effect problem, there have been an

increasing number of methods proposed in the past decade.

From a general review, the following studies were per-

formed on the ground of the optimal use of energy

resources and the appraisals of the scale-based uncertain-

ties. One of the decision-oriented studies on energy sour-

ces, a vision of information systems that are state of the art

in the energy field was presented (Dominguez and Amador

2008). In an outstanding study, the signed distance func-

tions were used in global coal reserve estimation (Deutsch

and Wilde 2013). Scale-dependent and spatially varying

considerations in soil contamination problem were dis-

cussed from a geographical perspective (Lia et al. 2017).

The coal mapping problem was considered as a composi-

tional data analysis problem and transformation-based

applications have been suggested as a solution (Karacan

and Olea 2018). Based on the spatial relationships, various

models were proposed to explore the reasons in back of the

extensive height of the zones in a coal seam (Li et al.

2018). The spatial ecological uncertainties encountered in

coal sites have been evaluated by different pattern indices

(Wu et al. 2019). Most recently, coal qualite evaluation has

been performed using multielemental compositions and

geographical information (Kanduc et al. 2019).

Even though the explorative energy source models in

literature provide some information for making general

evaluations, there are still some limitations. Principally a

meta-data covers the available information concerning

inter dependence and this small scale variability have been

generally omitted. Due to the importance of the meta-data

parameters such as search radius and weights, the quanti-

tative lignite site investigations should pay regard to dis-

tance-based transparency along with the accuracy.

Filling a gap in coal reserve evaluation from a sustain-

ability perspective is the main motivation of this study. The

current literature follows a single univariate geostatistical

method. However, this paper suggests a critical method-

ology and concentrates on the multi-parameter analysis by

considering the place of the sample points and their relative

contributions. By this way, the critical parameters and

some meta-data such as local bandwidths and relationships

are revealed based on multivariate spatial evaluation. Two

real lignite sites were considered and the relationships

among the quality variables were explored from a spatially

weighting perspective.

For a global exploration, Generalized Additive Models

(GAMs) (Wood 2017) have been used and importance of

geographical weighting has been presented by a multi-

variate analysis framework. As discussed by Ravindra et al.

(2019), the GAM ensures a specification of target by

determining the model from the point of smooth function

as an interchange of the elaborative parametric dependen-

cies on the covariates. To represent the relationships and

effective patterns at global scale, an additive model-based

evaluation has been conducted in extensive analysis due to

the potential flexibility, smoothing capacity, and fitness of

the GAM.

In a similar way, the areal relationships in connection

with bandwidth and weighting have been revealed at local

scale by Geographically Weighted Regression (GWR)

(Brunsdon et al. 2002). The method considered spatial

heterogeneity, generated differentiated estimations of

parameters and non-stationarity across spatial locations (Li

et al. 2019a, b).

Both the methods discovered the effect of distance

(bandwidth) and spatial positions (weight effect) on the

variable values using performance measures. Moreover, a

comparative error-based evaluation and performance

measures indicated the best combination and inter-

dependencies.

2 Methodology

2.1 Geographical consideration of lignite deposit

Coal mining associates with the depositional process of

coals in a basin. Therefore, in connection with geological

environments and structures, coal quality is controlled by

some geological factors. Therefore, spatial properties

encountered in a depositional process should be considered

in an analysis.

As the explanatory term, heterogeneity addresses

regional similarity and global difference in a deposit

(Yacim and Boshoff 2019). Identifying and modeling

spatial heterogeneity in a lignite site require specifying

critical field parameters like influential distances (band-

width) and the main determinants like weights. The
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spatially varying connections are pertinent to different

observations recorded at a series of formlessly distributed

geographic locations in a site (Yaylagul 2019). Therefore,

to provide some meta-data and information on inter-de-

pendencies, the analyses should be performed both at

global and local scales. The lignite quality determinants:

ash (%), sulfur content (%), volatile matter (%), moisture

(%), and lower calorific value (LCV) (kJ/kg) are consid-

ered including spatial variability.

Determining the specification of the most favorable

approach and the scale to accelerate the preliminary coal

assessment has critical importance (Andrews-Speed et al.

2005). A global analysis based on spatial relationships

assumes to apply statistical properties equally across a coal

reserve. In some cases, the global models may mask the

spatial relationships and they can not accurately reflect the

spatial heterogeneity. In such circumstances, the local

analysis subrogates the global perspective (Tutmez et al.

2012). By an areal approach, small scale variability and

localization (clusters) in a lignite site can be identified

using similarity indicators and local weightings.

2.2 Analysis at global scale

The multivariate analysis can usually be expressed by

general linear structures and explained underneath. Multi-

ple least-square adjustments are employed to predict a

target Y variable for various independent X indicators. The

dependence between response variable and indicator vari-

ables within a linear model can be structured as:

yi ¼ b0 þ b1xi1 þ b1xi2 þ . . .þ bpxip þ ei ð1Þ

The non-linear fits can potentially perform more accu-

rate estimations for the target Y. In a GAM model, each

linear component bjxij is replaced with a (smooth) non-

linear function fj xij
� �

. Thus, the new configuration permits

non-linear relationships between each indicator and the

response parameter. Put it differently, in place of a single

coefficient for every variable a non-parametric function can

be calculated for each predictor, to provide the best esti-

mation of the response variable values.

Globally, the GAM structure can be expressed as fol-

lows (James et al. 2013):

Fig. 1 Location map
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yi ¼ b0 þ
Xp

j¼1

fj xij
� �

þ ei

¼ b0 þ f1 xi1ð Þ þ f2 xi2ð Þ þ . . .þ fp xip
� �

þ ei

ð2Þ

In Eq. (2), f j for each Xj are calculated separately.

Thereafter, all of the components are added together. The

main superiority of a GAM model is reducing the residual

in estimation of a target Y from distributions via appraising

undefined functions linked via a function. The link function

converts the target variable to relate it to set of covariates;

thus, the structure can be designate by using the probability

distribution of the target (Yoon 2019). Adapting an addi-

tive model with a smoothing spline is one of the trust-

worthy methods. Thus, a model is fitted including multiple

indicators (input variables) by recurrently amending the fit

for each indicator in turn, holding the others fit. As in more

to splines, polynomial regression can also be employed in

establishing a component for the additive models (Wood

et al. 2015).

2.3 Analysis at local scale

In an ore deposit, the areal coefficients varied in space

address an indication of non-stationary. Geographically

Weighted Regression (GWR) identifies with the spatial

non-stationary of observational dependencies, provides a

weighting of non-stationary measurements that is region-

ally certain, and also permits model parameters to vary in

space. While a global approach assumes the processes

generating the measurement data are the same everywhere

so that an individual parameter is predicted for each

covariate, the GWR considers this presumption by adjust-

ing a model at each point to provide location-specific

parameter estimates for each process (Li et al. 2019a, b).

The linear structure given in Eq. (1) is solved by a least

squares method as follows:

b
^
¼ ðXTXÞ�1XTy ð3Þ

The geographically weighted analysis provides a local

solution for the structure in Eq. (3) using kernel functions.

The parameters are obtained by solving

b
^
ðui; viÞ ¼ ½XTWðui; viÞX��1XTWðui; viÞy ð4Þ

where, b
^
denotes an estimate of b, and Wðui; viÞ address

an n by n matrix whose diagonal components designate the

spatial weighting of each of the n measurements in regard

to point i (Yu et al. 2020). The rest of the matrix elements

arise from zeros. To represent the relative significance

among regions, a spatial weight matrix Wðui; viÞ can be

established as follows:

W ui;við Þ ¼

wi1

0

..

.

..

.

0

0

wi2

..

.

..

.

0

. . .. . .

. . .. . .

. . .. . .

0

0

..

.

..

.

win

2

666664

3

777775
ð5Þ

From a continuous distribution function, the weighting

(wij) term corresponds the scaled distances between i and j,

Fig. 2 Spatial positions of sampling locations
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dij. The commonly used function, Gaussian structure can

be expressed as follows

wij ¼ exp � 1

2

dij
b

� �2
" #

ð6Þ

where, b and dij represent the bandwidth of the search

domain and the distance between the sample i and the

middle of the kernel, respectively.

3 Case studies

To perform the applications, two lignite sites in Turkey

were considered. The lignite reserves in Turkey are placed

in commonly continental sedimentary basins of Tertiary

age (Ediger et al. 2014). The lignite-bearing areas also

show the properties of various geological mechanisms.

The analyses have been performed based on experi-

mental and algorithmic framework. To provide technical

information by local and global analyses, a series appli-

cation was performed using R packages such as GWmodel

(Brunsdon et al. 2002) and gam (Hastie 2015),

respectively.

3.1 Global scale case study

In the first application, the overall structure commonly

recorded in a lignite deposit has been investigated. The

lignite reserve in Canakkale, Turkey was considered in this

evaluation. The lignite area covers Mesozoic Limestone

and various Schistous blocks. The thickness of lignite seam

has variability between 5 and 65 m and it is placed in

conglomerates (MTA 2010). Figures 1 and 2 illustrate

location map and sampling structure (drill holes), respec-

tively. The descriptive statistics including mean, standard

deviation and relative uncertainty of 93 measurement

points (TKI 2018) are outlined in Table 1.

In Table 1, the explanatory indicator, relative uncer-

tainty (UR) addressed a ratio of standard deviation (Std) and

mean (M). Comparing with the other variables, ash and

sulphur content includes the big variability (uncertainties).

The small uncertainty in locations addressed a consistent

sampling design. Figures 3 and 4 describe the global inter-

relationships between coordinates and quality parameters,

respectively.

As recorded in Fig. 3, Easting direction has two modes

in comparison with Northing. A positive correlation which

addresses a directional trend is also recorded. In Fig. 4, all

the quality variables show about normal distributions. The

extreme variability was recorded for volatile matter and

sulphur content, respectively.

An unconventional experimental design has been cre-

ated to understand the relationships between the indicator

variables and LCV. The GAM-based global analyses have

been performed using non-linear continuous spline

Table 1 Statistical properties and relative uncertainty

Variable Mean, M Standard deviation (Std) Relative uncertainty, UR (%)

Easting-x (m) 501,362.80 1201.03 0.24

Northing-y (m) 4,430,388.52 399.39 0.01

Moisture (%) 23.61 3.98 16.85

Ash (%) 26.67 10.23 38.38

Volatile matter (%) 25.84 3.43 13.29

Sulphur content (%) 3.66 1.69 46.23

LCV (kJ/kg) 2989.09 773.52 25.88

Fig. 3 Relationship between sampling directions
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functions and this provided some consistency and trans-

parency using different exponential functions. The GAM

models have been assessed by the corrected determination

coefficient (CDO) below:

r2d ¼ 1� 1� r2ð Þ n� 1ð Þ
n� k � 1

� �
ð7Þ

where, n and k denote the number of observations and

variables (without constant), respectively. Table 2 sum-

marizes the design and the corresponding CDO perfor-

mances. Although the model performances have been

provided as very high, the models building without ash

cannot equal the rest of the model performances.

3.2 Local scale case study

In the second application, the lignite deposit located in

Tekirdag, Turkey was considered. The origin of the site

sediments is in Oligocene and quaternary epoch. The lig-

nite seams are placed in marl and sandstones. In general,

the lignite seams in the region exhibit discontinuous

property (Atalay and Tercan 2017). Figures 5 and 6 show

location map and sampling structure, respectively. Exca-

vated lignite is employed in the thermal power plant as the

fundamental fuel (MTA 2010). The statistical properties of

the data set including 51 sampling locations (TKI 2018) are

outlined in Table 3.

The variations of the variables corresponding with LCV

are illustrated in Fig. 7. Table 3 and Fig. 7 show that ash

Fig. 4 Relationships among quality parameters
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and sulphur content have the big variability. There is a

clear trend between ash content and LCV monitored.

To specify and simplify the local analysis, the rela-

tionships between the indicator variables and LCV have

been considered in pairs. The contributions of the pair-wise

indicator variables on LCV have been assessed by different

levels of bandwidths (m) such as 500, 1000, 2000, 5000,

10,000, 15,000, 20,000, 25,000. The patterns between zone

of influence and model performance are illustrated in

Fig. 8.

Fig. 5 Location map for lignite site

Table 2 Experimental design and performances

Model number Variables CDO (%)

1 LCV * x ? y ? moisture ? ash ? volatile matter ? sulphur content 0.949

2 LCV * x ? y ? moisture ? ash ? volatile matter 0.950

3 LCV * x ? y ? moisture ? ash ? sulphur content 0.941

4 LCV * x ? y ? moisture ? volatile matter ? sulphur content 0.887

5 LCV * x ? y ? ash ? volatile matter ? sulphur content 0.935

6 LCV * moisture ? ash ? volatile matter ? sulphur content 0.945

7 LCV * moisture ? ash ? volatile matter 0.946

8 LCV * moisture ? ash ? sulphur content 0.939

9 LCV * moisture ? volatile matter ? sulphur content 0.857

10 LCV * ash ? volatile matter ? sulphur content 0.915
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3.3 Discussion

As a fossil fuel, lignite includes both organic and inorganic

compounds. The correlations and inter-dependencies

recorded in the descriptive statistics are partly related with

this content as well as the geological structure. For

example, the relatively strong spatial correlation between

ash and LCV recorded in both data sets indicate the

importance of amount of the inorganic matter contents.

The global scale analyses were performed based on

generalized additive framework. In the first part, the single

effects of the coordinates and quality variables have been

investigated. Since the model is additive, the effect of each

quality variable on LCV have been analyzed individually

while holding the rest of the quality variables fixed. As can

be seen in Table 2, the most of the combinations revealed

very high GAM performances on 10 (5 ? 5) models. In

addition, the role of ash parameter, which has strong neg-

ative correlation with LCV, has been recorded (Fig. 4). In

the second part of the global analysis, the importance of the

coordinates (weighting) were investigated by an experi-

mental setup. By this way the contribution of distance

effect have been incorporated into the models using three

quality variables directly. Figure 9 illustrates the outcomes

of this investigation. The increasing in the performances

using spatial weighting revealed that geological structure

and positions create new additional information in model

development. All the model combinations in Fig. 9

demonstrate the improvements provided by spatial

weighting. Therefore, it is required to consider geograph-

ical sampling information together with the indicator

variables measurements in any energy sources planning

investigation.

The local scale analyses have provided some informa-

tion both on the effective distances and the resulting model

residuals. Determination of the zone of influences revealed

the effective zones and localisation all together. Hence,

dependence between the pairs and LCV exhibited a

Table 3 Descriptive statistics and uncertainty

Variable Mean value, M Standard deviation (Std) Relative uncertainty, UR (%)

Easting-x (m) 581,032.55 8390.87 1.44

Northing-y (m) 4,588,192.92 3418.16 0.07

Moisture (%) 43.30 4.53 10.45

Ash (%) 18.46 5.78 31.29

Volatile matter (%) 20.58 2.70 13.11

Sulphur content (%) 2.10 0.62 29.66

LCV (kJ/kg) 2035.89 341.49 16.77

Fig. 6 Sampling pattern
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categorization as in Fig. 10. For example, at fixed moisture

content, the correlated distance (search radius) between ash

and LCV reaches up to 3 km. However, sulphur content

and volatile matter signify relatively small scale variability

in terms of LCV. The determination of the limits of the

search domains has also practical benefits for the optimal

planning of lignite energy resources in production decision

making steps.

The local scale appraisals were approached on the model

residuals. The local analyses enabled in specification for

the residual design and provided to be some appropriate fits

for the observations having various distributions. Figure 11

illustrates the absolute errors for the pair-wise variable

models. The established model using moisture and ash

provided the best accuracy. This result supports the zone of

influence expressed in Fig. 10. In other words, the

increasing effective distance ensures the increasing accu-

racy. The pair-wise model built by sulphur content and

volatile matter also promotes this determination.

The learning structures ensure step-by-step procedures

that can be employed in real applications each time the data

become available. Almost all of lignite resources have

heterogeneous properties and the evaluations can be made

both global and local scales. By the global tool, a model

can be fitted involving multiple quality variables via

recursively revising the fit for each variable in turn, con-

tinuing the others fit. In a local perspective, the spatially

non-stationary relationships among the lignite quality

variables and measurement locations can be appraised.

Thus, by conducting an integral resource appraisal at dif-

ferent scales will be provided some indispensable

Fig. 7 Variations of indicator variables
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information used in planning the optimal use of limited

energy sources.

4 Conclusions

Performing convenient and efficient computational analysis

and providing reliable results on energy resources have

paramount importance for the optimal use of energy

sources, industrial development as well sustainable envi-

ronment. From this point of view, to explore the complex

relationships encountered in heterogeneous lignite sites,

two real case studies have been designed and different

scale models have been performed. The methodology used

in this study is different from any single univariate geo-

statistical analysis as it focuses on the multivariate analysis

by considering the location of sample points.

The global analyses indicated the contributions of spa-

tial weights. Comparing with the non-weighted (without

coordinate information), weighted additive models pro-

vided better accuracies and flexible-transparent models.

This study has used geographically weighting approach and

it conducted local scale analyses. This implementation

enabled to specification for the error structure. The analy-

ses on the zone of influence and pair-wise residuals showed

that the determination of accurate calorific value variation

Fig. 8 Contributions of pair-wise indicators versus search radii
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not only depends on effective search radius but also asso-

ciates with the spatial-dependence based weights. The

methods considered spatial heterogeneity, and generated

estimations of parameters and non-stationarity across

spatial locations. By this way, uncertainty and autocorre-

lation among the lignite quality parameters have been

appraised.

Fig. 9 Spatial and non-spatial weighting-based global performances

Fig. 10 Local search domains

866 C. Yaylagul, B. Tutmez

123



There are some limitations of the models. Firstly, a

global model may be additive so as a result of this may be

restricted. Similarly, a local analysis could be influenced

from collinearity and outliers. From a coal science view, a

consolidation of compositional data property and suggested

methodology would be required in a future study.
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