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of the mine environment provides an opportunity for early 
remediation leading to the long-term sustainability of the 
environment and mining operations.

1.1 Coal mining under upland peat swamp 
environments

Mining under economically significant and ecologically 
sensitive environments such as upland peat swamps pose 
a unique challenge to the mining industry and government 
regulators. Upland peat swamps in the Sydney basin biore-
gion, New South Wales, Australia mainly occur on coastal 
highland or upland plains of Triassic Sandstone formation 
(Department of Sustainability, Environment, Water, Popu-
lation and Communities, 2018) and are technically termed 
temperate highland peat swamps on sandstone (THPSS). 
THPSS consists of uniquely diverse ecosystems comprising 
treeless heaths and sedgelands. These environments play 
an essential role in filtering and slowly releasing water to 

1 Introduction

Extraction and use of minerals is a critical component in 
the development of current and future societies. In contrast 
to its benefits there have been concerns about the negative 
impacts of mining on the society and the environment. Min-
ing is a temporary use of the land, but its socio-environ-
mental impacts could be long term. Continuous monitoring 
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Abstract
Near earth sensing from uncrewed aerial vehicles or UAVs has emerged as a potential approach for fine-scale environ-
mental monitoring. These systems provide a cost-effective and repeatable means to acquire remotely sensed images in 
unprecedented spatial detail and a high signal-to-noise ratio. It is increasingly possible to obtain both physiochemical and 
structural insights into the environment using state-of-art light detection and ranging (LiDAR) sensors integrated onto 
UAVs. Monitoring sensitive environments, such as swamp vegetation in longwall mining areas, is essential yet challeng-
ing due to their inherent complexities. Current practices for monitoring these remote and challenging environments are 
primarily ground-based. This is partly due to an absent framework and challenges of using UAV-based sensor systems in 
monitoring such sensitive environments. This research addresses the related challenges in developing a LiDAR system, 
including a workflow for mapping and potentially monitoring highly heterogeneous and complex environments. This 
involves amalgamating several design components, including hardware integration, calibration of sensors, mission plan-
ning, and developing a processing chain to generate usable datasets. It also includes the creation of new methodologies 
and processing routines to establish a pipeline for efficient data retrieval and generation of usable products. The designed 
systems and methods were applied to a peat swamp environment to obtain an accurate geo-spatialised LiDAR point cloud. 
Performance of the LiDAR data was tested against ground-based measurements on various aspects, including visual 
assessment for generation LiDAR metrices maps, canopy height model, and fine-scale mapping.
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definitive about water quality and identify potential short 
and long-term impacts on swamps with limited monitoring.

1.2 Existing monitoring technologies

Several traditional methods are used for monitoring the 
potential impact of mining on peat swamps. Methods suit-
able for early identification of effects include field-based 
geotechnical methods (borehole testing and joint moni-
toring), geophysical methods (downhole logging, elec-
tromagnetic conductivity and ground-penetrating radar) 
and hydrological methods (shallow groundwater monitor-
ing, deep groundwater level or pressure monitoring) (CoA 
2014). However, peat swamps are often located in steep 
and elevated terrain. Many field-based methods are con-
strained by difficult site access and coverage area, mainly 
if heavy equipment is necessary. The status of swamps can 
also be assessed using baseline ecological conditions, which 
include vegetation survey (flora census, vegetation commu-
nity patterns and vegetation condition), fauna (wetland frog, 
reptile, bird and invertebrate) monitoring, and invasive spe-
cies monitoring methods (CoA 2014). These ecological field 
surveys are limited to monitoring specific locations and rely 
on data extrapolation. These methods are also subjective to 
the approach used to infer the ecological baselines. Usually, 
a set of different ecological surveying methods are needed 
to establish the condition of swamps.

Remote sensing based methods are alternative approaches 
to monitoring the ecological response of swamp vegetation. 

downstream watercourses. Additionally, providing habitats 
for a wide range of animals, including birds, reptiles and 
frogs. A few of the threatened species with habitat require-
ments specific to THPSS conditions include the Giant bur-
rowing frog (Heleioporus australiacus), Blue Mountains 
water skink (Eulamprus leuraensis) and Giant dragonfly 
(Petalura gigantean) (CoA 2014). THPSS environments 
are listed as an endangered ecological community because 
of their limited distribution and vulnerability to ongoing 
threats such as underground longwall mining and agricul-
ture (CoA 2014). These ecological communities may be 
influenced by underground longwall coal mining activities, 
which can potentially disrupt the local geology, topography, 
water regimes and water quality of the THPSS (NSWDP 
2008; CoA 2014; Vervoort 2021). Potential impacts include 
the disruption of water availability and quality, leading to 
the degradation of the host ecosystem.

Accidental discharge of mine wastewater into drainage 
lines uphill from the swamps is also a potential risk (CoA 
2014). Improperly treated mine water discharges include 
saline discharges (Opitz and Timms 2016; Greene et al. 
2016) and acid mine drainage (Akcil and Koldas 2006), all 
of which can degrade freshwater resources and potentially 
impact sensitive environments and ecosystems (Younger 
and Wolkersdorfer 2004). Poor water quality may involve 
one or more parameters: salinity, turbidity, acidity, metals, 
organics, and other contaminants of concern, such as toxic 
algae or radiological elements. However, it is difficult to be 

Fig. 1 A comparison of satellite, airborne and uncrewed aerial vehicle (UAV) remote sensing systems for environmental monitoring applications
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1.4 UAV-LiDAR scanning in environmental 
monitoring

Recent developments in the miniaturisation of aerial robotic 
platforms and electro-optical sensors have established a new 
era of aerial remote sensing using uncrewed aerial vehicles 
(UAVs). The unprecedented resolution, high signal-to-noise 
ratio, operational flexibility, ability to access remote loca-
tions, ease of use and low cost have attracted interest from 
scientific and commercial communities (Colomina and 
Molina 2014; Ren et al. 2019). Such features make them 
suitable for fine-scale environmental monitoring than sat-
ellite or airborne systems (Fig. 1). UAVs with optical and 
infrared cameras have been used in THPSS; however to 
date, the approach has been limited to the detection of a sin-
gle species (Gleichenia dicarpa) (Strecha et al. 2012) and 
the mapping of vegetation community boundaries (Lechner 
et al. 2012). Studies were undertaken to test the potential 
of a UAV-hyperspectral system to map five swamp species 
(Allocasuarina littoralis, Empodisma minus, Lepidosperma 
limicola, Lepidosperma neesii and Pteridium aquilinum) 
in THPSS environments (Banerjee et al. 2020; Banerjee 
and Raval 2021). These studies demonstrate the advan-
tage of both high spatial and spectral resolutions for effec-
tively assessing vegetation in spectrally complex swamp 
environments.

UAV-LiDAR system is a cutting-edge technology that is 
and finding increased use in different applications. Jaakkola 
et al. (2010) developed and demonstrated the potential of a 
UAV-LiDAR system in a forestry application. Integration of 
lightweight LiDAR sensors with rotary type UAVs provided 
the benefit of using them more effectively in restricted envi-
ronments to obtain high-resolution 3D datasets at unprec-
edented detail. The high density of the LiDAR datasets 
directly translates to the accuracy of the derived secondary 
products such as topographic (Lin et al. 2011) and vegeta-
tion (Wallace et al. 2014) metrices. Banerjee et al. (2018) 
used optical imaging data and structural metrices from 
UAV-LiDAR for mapping complex vegetation communities 
in upland peat swamps. Therefore, accurate estimation of 
these structural metrices is crucial to environmental appli-
cations such as generation of topographic and canopy mod-
els, identification of vegetation types and attributes such as 
leaf area index. Finally, UAV-LiDAR systems are accurate, 
easy to use and have lower operational costs than traditional 
airborne laser scanning surveys, making them suitable for 
recurrent use in environmentally sensitive areas for condi-
tion assessment and reporting.

To this end, this study focuses on using a UAV-LiDAR 
system in mapping sensitive vegetation communities in a 
coal mining area. The work involved detailed protcols of 
(1) collecting UAV-LiDAR data, including procedures for 

These methods involve passive (multispectral, hyperspec-
tral and thermal) and active (light detection and ranging, i.e. 
LiDAR and radar) sensing approaches from airborne and 
satellite systems. Multispectral indices, such as the nor-
malised difference vegetation index (NDVI), indicate veg-
etation vigour, or greenness, assuming that high chlorophyll 
absorption in plants conveys information on plant health 
(Gandaseca et al. 2009; Setiawan et al. 2017). The enhanced 
vegetation index (EVI) has advantages over the NDVI in 
accurately interpreting vegetation coverage by incorporat-
ing corrections for atmospheric and soil influences (Weier 
and Herring, 2000). Time series EVI data is available in high 
frequency and has been used for monitoring the dynamics 
of peat swamps (Setiawan et al. 2016). Changes in vegeta-
tion distribution within peat swamps can be observed using 
high-resolution remote sensing (Jenkins and Frazier 2010; 
Zhang et al. 2018). Light detection and ranging (LiDAR) is 
an active-sensing system that can differentiate between bare 
earth and ‘non-ground’ points such as vegetation to monitor 
biomass (Englhart et al. 2013). The insufficient spatial reso-
lution of aerial and satellite based methods also restricts fine 
level assessment of vegetation conditions in THPSS. Con-
sequently, existing studies (Jenkins and Frazier 2010) have 
been limited to delineating swamp boundaries and vegeta-
tion baseline estimations.

1.3 Environmental monitoring using UAVs

Plant species physiologically adapted to survive in periodi-
cally inundated conditions have a competitive advantage in 
wetlands and swamps. Any alteration in swamp hydrology 
that causes drying of the peat will reduce this competitive 
advantage of wetland species and allow species assem-
blages to shift towards more terrestrial vegetation types 
(CoA 2014). Increases in the proportion of terrestrial spe-
cies in a swamp may indicate changing swamp hydrology. 
No change in the proportion of terrestrial species (or change 
within equilibrium limits) indicates the stability of hydrol-
ogy and peat moisture levels. This baseline composition of 
species within the equilibrium limit is regarded as the char-
acteristic vegetation composition, which is unique for each 
environment, including THPSS. Identification of individual 
vegetation species or assemblages in THPSS is critical to 
characterise their vegetation composition, and is the first 
step towards monitoring the changing health of the micro-
ecosystem under natural or anthropogenic stresses (Baner-
jee et al. 2017, 2020).
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shrub-type vegetation thickets (Banksia and Tea-tree), and 
Sedgeland-Heath complexes (Cyperoid, Restioid and Sedge-
lands) (NPWS, 2003; Jenkins and Frazier 2010). The selec-
tion of species for a vegetation monitoring and classification 
study needs to consider the ability to map the vegetation 
components (or classes) and their ecological significance. 
A total of eight vegetation classes were selected with five 
swamp vegetation classes and three non-swamp vegetation 
classes. A set of five swamp vegetation classes were identi-
fied based on their abundance and sensitivity to anthropo-
genic impacts: Dagger hakea (Hakea teretifolia), Grass tree 
(Xanthorrhoea resinosa), Pouched coral fern (Gleichenia 
dicarpa), Heath-leaved banksia (Banksia ericifolia), and 
Sedgeland complex (Empodisma minus, Gymnoschoenus 
sphaerocephalus, Lepidosperma limicola, Lepidosperma 
neesii, Leptocarpus tenax and Schoenus brevifolius). Pres-
ence of certain non-swamp or terrestrial vegetation species 
can indicate potential alteration of swamp hydrology. There-
fore, a set of three non-swamp vegetation classes were also 
identified: Black sheoak (Allocasuarina littoralis), Bracken 

filtering and generating a coherent point cloud, (2) pro-
cessing to generate structural metrices, (3) generating the 
canopy height model, and (4) classification of sensitive veg-
etation communities using different algorithms.

2 Materials and methods

2.1 Study area and identification of vegetation of 
interest

Temperate highland swamps on sandstone (THPSS) are 
critically endangered ecosystems (CoA 2014) distributed 
in the Blue Mountains, Lithgow, Southern Highlands and 
Bombala regions in New South Wales, Australia. This study 
focused on two swamps in a THPSS site in the Southern 
Highlands, located near Wollongong, southwest of the city 
of Sydney, Australia.

The two swamps have a complex distribution of sev-
eral species and vegetation communities, which exist as 

Fig. 2 a The integrated UAV-LiDAR system used in the study environment, b Map view of the study area with a detailed view of the swamp site 
survey boundaries (site-1 and site-2), ground truth sample locations (green triangles) and THPSS boundaries, and c 3D subsampled point cloud 
view with the calibration loop and flight lines for data acquisition
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2.3 UAV-LiDAR scanning

This section describes the method of developing a UAV-
LiDAR system and workflow, including a description of the 
LiDAR sensor used, procedures for system integration and 
aerial data acquisition, conversion of raw data to point cloud 
and pre-processing of the generated point cloud.

2.3.1 LiDAR sensor

This study used a mobile integrated LiDAR system (Phoe-
nix Aerial Scout). The primary sensor onboard the UAV is 
a Velodyne PUCK LiDAR scanning system. The internal 
laser sensor has a maximum range of 120 m and a range of 
80 m at 60% target reflectivity, which produces a typical 
range accuracy of ± 3 cm with a range resolution of 2 mm. 
The laser sensor records ranges and intensities for up to two 
echoes per pulse. It has a rectangular aperture beam width 
of 9.5 mm (vertical) × 12.7 mm (horizontal) and a beam 
divergence of 0.07° (vertical) × 0.18° (horizontal). The 
scanner uses a rotating sensor scanning mechanism with 16 
lasers oriented on a vertical axis. In this configuration the 
sensor has an angular FOV (vertical) of ± 15.0° (30°) and 
angular resolution (vertical) of 2°. The laser sensors spin 
on a horizontal axis with a 5–20 Hz rotation rate to produce 
an angular FOV (horizontal) of 360° and angular resolution 
(horizontal) of 0.1°–0.4°. The scanner has characteristic 
beam divergence more suitable for an automotive applica-
tion and less ideal for a mapping sensor. Nevertheless, this 
enables low power consumption and lightweight (830 g) to 
allow its use on UAV platforms.

The remaining sensors within the integrated LiDAR 
sensing payload consist of a dual-frequency RTK-GPS/
GLONASS with a lightweight antenna and inertial mea-
surement unit (IMU). The measurements from the GPS and 
the IMU are synchronised with a precision internal clock. 
To achieve the highest possible accuracy, they are logged 
at a rate of 50 Hz onto an embedded computer with a data 
storage unit. These core components and wirings (except 
the GPS antenna) are housed inside a protective harness 
and fastened to the LiDAR sensor using screws. The sensor 
records 0.3 million laser points per second on the on-board 
computer and downlinks a subsampled point cloud data to 
the ground station in real-time through a 5.8 GHz long-
range Wi-Fi wireless system to avoid acquisition errors. 
The total payload weight of the integrated LiDAR system is 
1.6 kg, and the dimensions are 16 cm × 11.6 cm × 11.6 cm.

2.3.2 System integration and aerial data acquisition

The integrated LiDAR sensing system was mounted onto a 
UAV with the vertical axis of the LiDAR sensor aligned to 

fern (Pteridium aquilinum), and Eucalyptus trees. The list 
of classes and corresponding species was identified through 
several field campaigns and consultation with expert advice 
from field ecologists.

2.2 Sampling design and field measurement

Ground truth data includes a set of labels on the images 
intended for defining a model for classification or param-
eter retrieval. A proper ground truth sampling strategy is 
essential to eliminate significant biases from leaking into 
the process (Congalton 1991). Furthermore, to ensure that 
the ground data is representative of the spatial population, 
a suitable sample design must be chosen. Stratified random 
sampling is a method of selecting in which the elements 
of the population are allocated into sub-populations (e.g. 
strata) before the sample is taken, and then each stratum is 
randomly sampled (Brogaard and Ólafsdóttir, 1997). This 
sampling approach is used when specific information about 
certain sub-populations and increasing precision of the esti-
mates for the entire population is desired (Cochran, 1977; 
Clark and Hosking, 1986). In this study, a similar stratified 
sampling approach has been used. A total of 80 locations 
for ground truth sample collection were identified using this 
sampling approach within the shrub-type swamp vegetation 
classes only (i.e. Grass tree, Pouched coral fern and Sed-
geland complex) for the field survey, i.e. a total of 32 loca-
tions for swamp site-1 and 48 locations for swamp site-2 
(shown as green triangles in Fig. 2b). Coordinates of each 
location were measured using the ground-based real-time 
kinetic – differential global positioning system RTK-DGPS 
unit (Leica Viva GS15 GPS system) within 3 mm of abso-
lute accuracy. A set of four discrete ground truth points 
was identified at 1 m distances in the North, East, South 
and West directions using a compass as reference. This 
produced a total of 80 × 4 = 320 ground truth points for the 
shrub-type swamp vegetation. For each ground truth point, 
the vegetation’s species composition and canopy height 
were recorded.

Canopy Height Measurement – The canopy height was 
measured using the vertical graduated scale with a pointed 
bottom end. Due to the varying degree of density, in areas of 
high compaction of the shrub-type swamp vegetation, it was 
challenging to ensure that the bottom end of the graduated 
scale reached the true soil surface. Therefore, several sets of 
measurements were taken within (50 cm) of the vicinity of 
the sampling point to identify the canopy height correctly. 
In areas of highly fragile canopies several measurements 
(5 to 10) were collected within (50 cm) the vicinity of the 
point, and the median value was used as the representative 
measurement.
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between transects at 20 m, the resultant point had a swath 
width of 66.3 m and a lateral scan overlap of approximately 
70%. This resulted in significant overlap of laser footprints 
in both along and across-track directions and provided suf-
ficient angularity to the measurements to scan further inside 
the tall tree canopies.

Accurate sensor localisation and orientation measure-
ments are crucial for direct georeferencing, as these param-
eters are not consistent throughout the UAV-LiDAR survey. 
A set of time dynamic quality threshold parameters was 
used to avoid error propagation into the final point cloud 
model due to positional or orientational uncertainties. 
According to this criterion, for the small durations when 
the quality parameters were poor such as uncertainty in alti-
tude > 10 cm, position error > 10 cm, number of available 
satellites < 9, and differential lag > 20 ms, the raw data to 
point cloud transformation was avoided.

2.3.4 Pre-processing – point cloud sampling, segmentation 
and height filtering

A LiDAR scan often contains tightly placed points that are 
redundant in nature. These points could be left behind due 
to oversampling caused by the high sampling rate of the 
scanner or by the overlap of the point cloud from multiple 
transects. Such redundant points from the UAV-LiDAR 
point cloud were removed by sampling the data with a mini-
mum threshold (> 0.01 m) separation criterion. Minor errors 
introduced by the IMU or RTK-GPS system can cause some 
erroneous points to be produced in a LiDAR scan that is out-
side the general body of the scanned surface. A point cloud 
segmentation approach using connected component label-
ling (in CloudCompare v2) was applied with an 8th level 
octree and 10,000 connected points to identify the primary 
segment of the scanned surface and remove non-surface 
erroneous points. Further processing was performed to fil-
ter the point cloud into ground and non-ground (vegetation) 
classes and to calculate the heights of the vegetation points 
above the ground using the BCAL (BCAL LiDAR Tools 
for ENVI) height filtering tool (Streutker and Glenn 2006). 
The parameters for canopy spacing were set at 5 m with 
a maximum vegetation height of 30 m in the processing 
step, which represented the vegetation canopy structure of 
Eucalyptus trees around the swamp environment. The pre-
processing steps also helped filter out erroneous artefacts 
which would otherwise propagate to the results.

A surface point density map was produced after essen-
tial pre-processing (point cloud sampling, segmentation 
and height filtering) to test the quality of the resulting point 
cloud, i.e. to identify if the number of scanned points was 
sufficient and if a moreover uniform point distribution exists 
throughout the study area, which is essential for generation 

the along-track and horizontal rotating plane aligned in the 
across-track direction of the flight trajectory. A customised 
coaxial rotor quadcopter UAV system was used to mount the 
integrated LiDAR sensing payload. Platform instability and 
vibration of the UAV platform is a critical issues for LiDAR 
data acquisition. High-frequency vibrations produced from 
the rotor movements of modern UAV platforms can induce 
rapid movement, which is difficult for the IMU to compen-
sate for. The quadcopter assembly provided necessary sta-
bility, and the coaxial rotor configuration reduced vibration 
due to aerodynamic compensations, which further increased 
the total lift weight capacity of the UAV. Vibration from 
rotors was further isolated by mounting the LiDAR payload 
system using four silicon rubber mounts. This provided suf-
ficient physical support and compensation for the system to 
acquire precise point cloud data. The total system weighed 
under 9 kg and offered a flight time of around 15 min. The 
integrated UAV-LiDAR system is shown in Fig. 2a.

The customised coaxial quadcopter has a standalone con-
trol system based on a 3DR Pixhawk2 mini flight controller. 
A pre-survey initialisation procedure was performed, which 
required the UAV-LiDAR system to be powered on and then 
flown three times in a pattern of “8” to calibrate all the time-
base mismatches between IMU, GPS and laser scanner. The 
procedure is highlighted with a blue-dashed-bounding box 
in Fig. 2c. The UAV-LiDAR system was operated over the 
two test sites according to a pre-designed flight plan with 
a flying height of 50 m and speed of 5 m/s, with a transect 
spacing of 20 m. In this flying configuration, each test site 
was covered with a set of four parallel flight transects, and 
the entire mission was completed in two separate flights, 
which took approximately 25 min in total.

2.3.3 Raw data to point cloud

All the raw ranging information from the laser scanner, 
along with the time-tagged roll, pitch, yaw and position 
information from the IMU and RTK-GPS/GLONASS units, 
was downloaded from the on-board data storage. The raw 
laser scanner data consists of a ‘.ldr’ format file of the range 
records. The orientation and positioning data were logged 
on a separate file. The raw datasets were fused using a stan-
dard range transformation model (in Phoenix Aerial Spatial 
Fuser v3.0.5) to produce the georeferenced point cloud (in 
log ASCII or ‘.las’ format). The process included correc-
tion for the centre of the IMU, RTK-GPS/GLONASS unit 
to the laser sensor geometric translation. All 16 channels of 
the LiDAR were used for the generation of the point cloud. 
The laser footprint at nadir was 0.12 m along-track and 0.31 
m across-track with a flying height of 50 m. To limit laser 
beam divergence, laser returns with ranging values > 60 m 
were masked out in point cloud generation. With the spacing 
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Table 1 Derived LiDAR metrices from the point cloud scan of the swamp environment
Derived 
LiDAR 
metrices

Item Description

Topographic Absolute roughness The roughness (standard deviation) of all elevation points within each pixel
Local roughness The roughness (standard deviation) of all elevation points within each pixel after the local 

slope has been removed (de-trended)
Slope The average slope of all points within each pixel in degrees
Aspect The aspect of the average slope of all points within each pixel in degrees from North
Topographic solar radiation 
index (TRASP)

Transformation of aspect (TRASP), used by (Roberts and Cooper, 1989), is defined as 
[1?cos((π/180)(aspect − 30) )] /2. TRASP assigns the low value to north-northeastern 
aspect, and the high values to, dryer south-southwesterly slopes

Slope cosine aspect 
(Slpcosasp)

Slpcosasp is calculated as slope × cosine (aspect)  (Stage, 1976).

Slope sine aspect (Slpsinasp) Slpsinasp is calculated as slope × sine (aspect)  (Stage, 1976).
Point density The density of all points within each pixe

Vegetation 
Products

Minimum height The minimum of all height points within each pixel
Maximum height The maximum of all height points within each pixel
Height range The difference of maximum and minimum of all height points within each pixel
Mean height The average of all height points within each pixel
Median absolute deviation 
(MAD) from median height

The MAD value of all height points within each 
pixel.MAD = 1.4826 × median (| height − median height |)

Mean absolute deviation 
(AAD) from mean height

The AAD value of all height points within each 
pixel.AAD = mean (| height − mean height |)

Height variance The variance of all height points within each pixel
Height standard deviation The standard deviation of all height points within each pixel. This is also called ‘absolute 

vegetation roughness’
Height skewness The skewness of all height points within each pixel
Height kurtosis The kurtosis of all height points within each pixel
Interquartile range (IQR) of 
height

The IQR of all height points within each pixel. IQR = Q75 − Q25, where Qx is xth 
percentile

Height coefficient of variation The coefficient of variation of all height points within each pixel
Height percentiles The 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of all height points within each pixel
Number of LiDAR returns The total number of all points within each pixel
Number of LiDAR vegetation 
returns (nV)

The total number of all the points within each pixel that are above the specified crown thresh-
old value (CT)

Number of LiDAR ground 
returns (nG)

The total number of all the points within each pixel that are below the specified ground 
threshold value (GT)

Total vegetation density The percent ratio of vegetation returns and ground returns within each 
pixel.Density = nV/nG ∗ 100

Vegetation cover The percent ratio of vegetation returns (nV) and total returns within each pixel
Percent of vegetation in height 
range

Percent of vegetation in height ranges 0–1 m, 1–2.5 m, 2.5–10 m, 10–20 m, 20–30 m, and 
> 30 m within each pixel. Percent of Vegetation = Number of vegetation returns in the range/
Total vegetation returns

Canopy relief ratio Canopy relief ratio of points within each pixel. Canopy relief ratio = ((Hmean - Hmin))/((Hmax 
- Hmin))

Texture of heights Texture of height of points within each pixel, i.e. standard deviation of height above ground 
threshold and height below crown threshold

Foliage height diversity (FHD) is denoted by FHD = −
∑

piln (pi) where pi is the proportion of the number of LiDAR 
returns in the ith layer to the sum of LiDAR points of all the layers (using all points)

Foliage height diversity above 
ground threshold (FHDGT) – 
points above ground

FHD calculated only using points above GT

Intensity Minimum Intensity The point with the minimum intensity value within each pixel
Maximum Intensity The point with the maximum intensity value within each pixel
Mean Intensity The mean intensity of all points within each pixel
Standard Deviation Intensity The standard deviation of intensity value of all points within each pixel

Page 7 of 16    40 



B. P. Banerjee, S. Raval

1 3

using the coefficient of determination (R2) statistics (Cam-
eron and Windmeijer 1997).

2.3.7 Classification of LiDAR data for mapping

The stacked LiDAR metrices were used to differentiate the 
different types of swamp vegetation classes. A set of seven 
supervised classifiers such as parallelepiped (PP), maxi-
mum likelihood (ML), minimum distance (MD), Mahalano-
bis distance (MHD), spectral angle mapper (SAM), spectral 
information divergence (SID), and support vector machine 
(SVM) were used from ENVI (Exelis Inc., Harris Corpora-
tion, Boulder, Colorado, United States) to demonstrate the 
ability of the different datasets in the classification process 
and cross-validation. To mutually evaluate the classifiers, 
a standard ‘null’ parameter setting was used for each clas-
sifier, i.e., no standard deviation threshold from mean was 
used for PP, MD and MHD, no probability threshold was 
used for ML, no maximum threshold angle for the SAM, 
and no maximum divergence angle was used for SID. The 
SVM classifier out of the set of seven classifiers is based on 
machine learning, and as such, was computationally inten-
sive. However, the objective here was not to identify an 
efficient and robust classification workflow but to evaluate 
the potential of LiDAR data in mapping sensitive vegeta-
tion communities with well-established classification meth-
odologies. A standard parameter setting using a radial basis 
function with a kernel gamma function of 0.167, penalty 
parameter of 100 and pyramid level of 5 was used.

The 35 LiDAR metrices (Table 1) were first stacked to 
produce a composite multi-dimensional dataset. However, 
all the derived LiDAR metrices do not necessarily con-
tain useful information for classification. Therefore, two 
data dimensionality reduction techniques – principal com-
ponent analysis (PCA) (Richards and Richards 1999) and 
independent component analysis (ICA) (Hyvärinen and Oja 
2000) were used to condense the information content of 35 
LiDAR metrics. This step essentially condensed the useful 
information from all the 35 metrices to the initial layers of 
the stacked dataset. The first 15 LiDAR metrices with high 
information content were then selected from the stacked 
dataset, where the eigenvalues > 0.2. A 3 × 3 enhanced frost 
filter (Lopes et al. 1990) was used to adaptively average 
pixel values in homogenous clusters with a coefficient of 
variation, Cu=0.523, and an impulse response convolution 
kernel for heterogeneous clusters with a maximum coeffi-
cient of variation, Cmax=1.732. At this stage, the dimension-
ally reduced and filtered 15 metrices composite data can 
undergo a classification operation similar to the multispec-
tral and hyperspectral datasets.

A total of 320 ground truth measurements were collected 
for shrub-type swamp vegetation through a rigorous field 

of useful metrices from the point cloud. The surface point 
density map was produced by counting the number of points 
scanned over a regularly spaced grid of 1 m throughout the 
study area. Additionally, a histogram distribution of the sur-
face point density was produced to identify the point density 
of the scan.

2.3.5 Retrieval of LiDAR metrices

The relative position or local relationships between a set 
of neighbourhood points in a LiDAR point cloud can be 
mathematically analysed to derive a spatially representative 
surface map which is easier to use with traditional remote 
sensing tools. These mathematical derivatives are known 
as LiDAR metrices. A total of 35 LiDAR metrics related 
to topography, vegetation, and intensity were derived using 
BCAL LiDAR Tools (Table 1).

Generation of LiDAR metrices from a highly dense 
point cloud acquired from UAV-LiDAR is a computation-
ally intense and time-consuming process, particularly in the 
absence of a graphics processing unit (GPU) based on multi-
core parallel processing capabilities with BCAL. Therefore, 
LiDAR metrices (Table 1) generation was processed at a 
grid size or pixel resolution of 10 cm to limit excessive 
processing time. The metrices were derived with a ground 
threshold of 10 cm and a crown threshold of 20 cm. A bin 
height of 1 cm was used to compute foliage height density 
(FHD) parameters.

2.3.6 Extracting canopy height model from LiDAR data

A bare earth digital elevation model (DEM) at 10 cm reso-
lution was produced using the LiDAR point cloud by only 
considering the last returns in BCAL. The process assigns 
the minimum altitude value of the previous return points 
within each grid or pixel size of 10 cm. The model approxi-
mates a DEM surface by interpolation in dense areas with 
the absence of correct ground-level measurements due to 
dense canopies. A digital surface model (DSM) was also 
computed by using the first returns of the LiDAR point 
cloud, and assigning the maximum altitude value of any 
point within the 10 cm grid to the corresponding pixel value 
of the DSM. The canopies of shrub-type swamp vegetation 
are often fragile or tilted (due to wind), which usually does 
not produce sufficient first return measurements for correct 
canopy height measurements. A 5 × 5 local maximum fil-
ter was applied on the DSM to assign the maximum height 
within an area of 50 cm by 50 cm to the central pixel. A can-
opy height model (CHM) was then measured by subtract-
ing the DEM from the filtered DSM. The accuracy of the 
canopy height model was validated against the field-based 
measurements of canopy height of shrub-type vegetation 
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3.2 Surface point density and effect of pre-
processing

A uniform surface density map is essential for accurate 
processing and generating higher-order products from the 
LiDAR point cloud, such as LiDAR metrices. The pro-
grammed flight plan of the LiDAR scan produced a more 
uniform distribution of points. The point cloud was further 
processed to filter out redundant points, which improved the 
uniformity of the point cloud. This facilitates a moreover 
uniform distribution of surface point density, which helps 
avoid density induced bias in the computation of LiDAR 
metrices. The calculated surface point density map for the 
study area is shown in Fig. 4a. A high density of point cloud 
is also essential for accurate fine-scale mapping applica-
tions. A histogram of the surface point density plot is shown 
in Fig. 4b.

The scanned and pre-processed point cloud achieved 
a very high surface point density, with a distribution of 
345 pts/m2. This distribution of point cloud density is 

survey, the vegetation class for each point was geospa-
tialised as a field attribute. A buffer with a radius of 5 cm was 
created around each of the 320 measurements to produce 
an equivalent ground truth polygon for each measurement. 
An additional 128 ground truth polygons were also created 
through visual interpretation of high-resolution optical data 
maps. Ground truth samples for bush or tree-type vegetation 
classes such as Dagger hakea, Heath-leaved banksia, Black 
sheoak, and Eucalyptus trees were primarily acquired using 
this approach. The sampled ground-based (320) and image-
based (128) polygons were randomly divided into 1:1 mutu-
ally exclusive training and test samples, i.e. 160 ground and 
64 image-based polygons for each training and test group. 
The ground truth training set was used to train the classi-
fiers, and the test samples were used to compute the overall 
accuracy (OA), kappa (κ) and confusion matrix to evaluate 
the classification accuracies. All the seven classifiers were 
applied to the datasets at 10 cm resolution, and the overall 
accuracy (OA) and kappa (κ) values were tabulated. Clas-
sification maps based on the best classifier performance and 
the corresponding confusion matrix were produced.

3 Results

3.1 Geometric quality assessment for UAV-LiDAR

The UAV-LiDAR system and the raw data to the point 
cloud processing segment produced a georeferenced point 
cloud. The accuracy of the UAV-LiDAR metrices obtained 
through the processing chain was tested against referenced 
optical maps. The point cloud achieved an average error 
of 10.4 cm, which was deemed sufficient for further envi-
ronmental monitoring applications. For the study area, a 
UAV-LiDAR point cloud with a surface height profile for a 
portion of the study area is shown in Fig. 3.

Fig. 4 a Surface point density map obtained through UAV-LiDAR sur-
vey of the study area and b Histogram distribution of the surface point 
density - also showing the colour scale

 

Fig. 3 Point cloud obtained through UAV-LiDAR survey 
of the study area with a cross-section view of the surface 
height profile for a portion the swamp
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colour scaled synoptic view of the CHM for the two swamp 
sites in the study area is shown in Fig. 7a and a textured 
three-dimensional view is shown in Fig. 7b. The accuracy 
of the CHM was analysed with the ground truth values of 
canopy height measurements for shrub-type swamp vegeta-
tion cover. The overall R2 accuracy was found to be approxi-
mately 0.76, which was deemed sufficient for the type of 
vegetation cover. The computation of accurate CHM for 
shrub-type vegetation is relatively difficult compared to 
tree-type vegetation cover. This depends on two factors: the 

significantly higher than what was traditionally achieved 
through airborne surveys (approx. 20–40 pts/m2). This 
means UAV-LiDAR metrices can be produced with a signif-
icant accuracy and detail, which is beneficial to identifying 
and distinguishing the complex distribution of vegetation 
communities in a diverse ecosystem area such as swamps. 
Furthermore, high point density increases the likelihood 
of more points being recovered from under the canopies, 
which is essential to produce an accurate topographical sur-
face model to identify any deformation induced from under-
ground longwall mining. This indicates the potential benefit 
of using a UAV-LiDAR system in environmental applica-
tions requiring fine-scale mapping.

The pre-processing steps to filter the point cloud are also 
essential to avoid propagating errors in the LiDAR metri-
ces. A synoptic overview of the pre-processed point cloud is 
shown in Fig. 5. A false coloured composite of the processed 
LiDAR metrices (kurtosis, maximum vegetation height 
and coefficient of variation) for a spatially subset region is 
shown in Fig. 5a without any pre-processing and in Fig. 5b 
with proper pre-processing. The comparison demonstrated 
the efficacy of the pre-processing phase to avoid erroneous 
artefacts in the processed false coloured composite of the 
LiDAR metrics, marked in white ovals; such artefacts are 
removed with pre-processing.

3.3 LiDAR metrices

The point cloud from the UAV-LiDAR survey was pro-
cessed to produce a total of 35 LiDAR metrices related to 
topography, vegetation structure and intensity. The com-
puted metrices are equivalent to raster products, which can 
differentiate different vegetation species and classes using 
classical classification workflows and provide informa-
tion related to swamp vegetation conditions. A few of the 
selected maps of LiDAR metrices such as local roughness, 
slope cosine aspect (Slpcosasp), height range, vegetation 
cover, foliage height density (FHD), and mean intensity 
are shown in Fig. 6. The swamp area can be visually dis-
tinguished from the surrounding terrestrial type Eucalyptus 
trees without further processing. This shows the potential 
of a high-density point cloud obtained through the UAV-
LiDAR survey.

3.4 Canopy height model

The UAV-LiDAR point cloud was processed to produce a 
canopy height model (CHM) of the swamp environment. 
A CHM is useful for characterising the extent of an upland 
swamp environment by differentiating the low-lying peat 
swamp vegetation from the surrounding terrestrial vegeta-
tion such as Eucalyptus trees (Jenkins and Frazier 2010). A 

Fig. 5 Pre-processed point cloud (colourised as per elevation), and 
false colour composite (kurtosis, maximum vegetation height and 
coefficient of variation) of LiDAR matrices for a subset area: a With-
out pre-processing and b With pre-processing
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datasets were collected for both swamp site-1 and site-2. 
A total of eight vegetation classes as described in Sect. 2.1 
were present in swamp site-1 and site-2, these eight veg-
etation classes were used to operate the classification based 
evaluation, i.e. Dagger hakea, Grass tree, Heath-leaved 
banksia, Black sheoak, Bracken fern Eucalyptus tree, 
Pouched coral fern and Sedgeland complex. Additionally, 
some portion of the imaged area comprised of no-vegetation 
cover and was treated as a separate ‘Bare earth’ class, i.e., a 
total of nine classification classes. The UAV-LiDAR metri-
ces were dimensionally reduced using PCA and ICA, both 
of which were used for comparative analysis. The overall 

small and fragile nature of shrub-type vegetation canopies, 
and the footprint size of the laser. Under these scenarios, the 
accuracy of models could be improved by improving the 
beamwidth of the internal laser sensor in the UAV-LiDAR 
system or by incorporating machine learning methods to 
perform a parametric transformation of the coarse CHM 
product using reference tie point measurements.

3.5 Classification of vegetation communities

Data collected using the UAV-LiDAR system was evalu-
ated using a classification-based approach. The respective 

Fig. 6 LiDAR metrices maps of a Local roughness; b Slope cosine aspect (Slpcosasp); c Height range; d Vegetation cover; e Foliage height 
density (FHD) and f Mean intensity
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4 Discussion

4.1 Integration of UAV-LiDAR system

The UAV-LiDAR system was developed through sen-
sor and platform integration, including sensor calibration, 
sensor operation, orientation, mission planning, and data 
acquisition. The installation of a LiDAR sensor on the UAV 
required thorough consideration of several aspects of sen-
sor parameters such as laser range, GPS and IMU accuracy, 
beamwidth, a scanning mechanism, field-of-view and angle 

accuracy and kappa coefficient of the methods are listed 
in Table 2. The ICA(LiDAR) marginally outperformed the 
PCA(LiDAR) with most classifiers, with the exception of 
PP and SID. The best classification result was produced 
by combining the ICA(LiDAR) data with SVM classifier, 
which produced an overall accuracy of 73.42% and a kappa 
coefficient of 0.64.

Fig. 7 Canopy height model of the study area: a Synoptic view and b Textured three-dimensional view
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4.2 High-resolution point cloud from UAV-LiDAR

Acquisition of high-density point cloud is essential for 
detailed 3D imaging of the environment. Several factors 
such as speed of UAV-LiDAR system during scanning, 
distance from the target or flying height, spacing between 
transects and across track scan width influences the density 
of points collected during a scan. Furthermore, quality influ-
encing factors such as uncertainty in altitude, position error, 
number of available satellites, and differential lag need to 
be controlled to obtain well-registered point cloud data. A 
workflow was devised through the combination of a set of 
different software and processing solutions to effectively 
convert raw LiDAR return, position, orientation and qual-
ity information to a point cloud with high surface density, 
to pre-process the point cloud to remove redundant points 
and IMU induced errors, and to prepare the point cloud for 
further processing. The geometric accuracy of the integrated 
UAV-LiDAR system is crucial for fine-scale monitoring and 
mapping applications. A dedicated geometric quality assess-
ment exercise confirmed the high accuracy of the system. 
The system produced a very high-density point cloud in the 
complex swamp environment, which was helpful for the 
differentiation of several vegetation types.

4.3 Derived LiDAR metrices

The complex assemblage of swamp vegetation species and 
communities was studied using a UAV-based LiDAR sys-
tem. A total of 35 LiDAR metrices related to topography, 
vegetation structure and intensity were produced. The com-
puted metrices are raster products similar to hyperspectral 
indices, which can differentiate different vegetation species 
and communities using a classical classification workflow 
and provide useful information on swamp vegetation condi-
tions. The vegetation indices and selected LiDAR metrices 
produced through the UAV survey were validated and cross-
validated against biophysical parameters such as leaf area 
index (LAI) and canopy height model (CHM).

Deriving LiDAR metrices from a high-density point 
cloud is a computationally-intensive process. To provide an 
estimate, a spatial subset of the point cloud of approximately 
one-tenth the size of the total point cloud at a point density 
of 345 pts/m2 took over a week of processing to produce 
LiDAR metrices at 2 cm of resolution. This order of com-
putational inefficiency is limiting for routine environmental 
monitoring operations. Nevertheless, LiDAR metices could 
be relatively easily generated at lower spatial resolutions 
(> 10 cm). However, reconstruction of a multi-core parallel 
computation pipeline for the generation of LiDAR metrices, 
could be future scope for fine-scale mapping applications 
using UAV-LiDAR.

of scanning. The mission planning focused on these sen-
sor parameters to obtain an accurate point cloud with high 
surface point density, which required a design of a suitable 
calibration loop, and flight paths with significant overlap of 
laser footprints in both along and across-track directions. 
Attention and diligence to these aspects of system integra-
tion and operation were essential to retrieve accurate and 
effective data products seamlessly. Overall, these consid-
erations and innovative tuning towards various design and 
integration phases are critical to mine environmental moni-
toring, and other applications requiring accurate thematic 
mapping with UAVs, such as agriculture, forestry.

Table 2 Accuracy assessment for the classification of UAV-LiDAR 
data
Classifier PCA (LiDAR) ICA (LiDAR)

Overall 
accuracy
(%)

Kappa Overall 
accuracy
(%)

Kappa

Parallelepiped (PP) 18.49 0.13 5.91 0.04
Maximum Likelihood (ML) 58.77 0.49 60.00 0.51
Minimum Distance (MD) 43.16 0.33 45.49 0.35
Mahalanobis Distance (MHD) 48.02 0.37 48.31 0.38
Spectral Angle Mapper (SAM) 43.73 0.33 45.49 0.35
Spectral Information Diver-
gence (SID)

46.84 0.37 32.08 0.23

Support Vector Machine (SVM) 73.37 0.64 73.42* 0.64*
* Best result
The producer’s and user’s accuracy for each class with the best clas-
sification method is shown in Table 3. The classification accuracy 
was high for bare earth, Dagger hakea, Black sheoak, Eucalyptus 
trees and Sedgeland complex. However, the accuracy for Grass tree, 
Heath-leaved banksia, Bracken fern and Pouched coral fern was 
exceptionally low. The low accuracy with these classes for LiDAR 
is not surprising since the structural characteristics of these species 
are indistinguishable through LiDAR point cloud. The accuracy was 
high for tall terrestrial trees such as Black sheoak and Eucalyptus, 
which improved the classification accuracy of the Sedgeland complex 
class. The classification maps for and ICA(LiDAR) based approach 
using SVM classifier is shown in Fig. 8

Table 3 Class wise accuracy of best classification method – 
ICA(LiDAR) with support vector machine
Class Producer’s accuracy 

(%)
User’s 
accu-
racy 
(%)

Bare earth 78.12 82.88
Dagger hakea 99.17 92.07
Grass tree 16.95 32.51
Heath-leaved banksia 11.02 62.22
Black sheoak 87.35 73.18
Bracken fern 40.23 50.75
Eucalyptus tree 80.67 91.25
Pouched coral fern 58.68 52.45
Sedgeland complex 94.85 64.06
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and these subtle variations result in homogenous to het-
erogeneous conglomerations of target species as different 
sub-categories. Banerjee et al. (2017) identified the chal-
lenges in classifying these sub-categories of the Sedgeland 
complex as distinct classes due to the scale at which these 
species are mixed together, resulting in complex spectral 
and structural intermixing. However, it was essential to 
treat these sub-categories distinctly for biophysical param-
eter retrieval. Hence, the species composition mapping 
through further investigations has been performed using 
UAV-hyperspectral; however, only spectral information was 
insufficient in accurately mapping complex assemblages 
of species in swamp environments (Banerjee et al. 2020). 
Therefore, this study investigated the potential of LiDAR 
as a structural modality in mapping vegetation communi-
ties in diverse ecosystems. Additionally, the classification 
maps produced with the UAV-LiDAR system are less prone 
to shadow effects than optical and hyperspectral datasets. In 
future, a fusion-based approach between UAV based hyper-
spectral and LiDAR datasets could be valuable in accurately 
mapping complex vegetation communities.

4.4 Monitoring vegetation communities using UAV-
LiDAR

Satellite based spectral monitoring has been used to differ-
entiate bog from surrounding surface covers, such as sedge 
lands or grasslands, and identify any gain or loss in woody 
vegetation (Lechner et al. 2012). Such methods effectively 
monitor swamps if the phenology of the vegetation is docu-
mented, and especially, if changes in phenology due to pres-
ence or absence of water is known (CoA 2014). Natural 
fluctuations in variability over time are indicative of growth 
rates and phenology which could be analysed using remote 
sensing images of wet and dry seasons. Existing phenology 
products such as Australian Phenology Product available 
from Terrestrial Ecosystem Research Network (TERN) is 
coarse (5.6 km) in resolution and limited to regional level 
ecosystem modelling. THPSS sites represent small patches 
of the diverse ecosystem, which limits the applicability of 
readily available regional phenology products. Ground-
based phenological survey products could not be found for 
the study area. By developing appropriate UAV-based sens-
ing systems, this study acts as a foundation to generate fine-
scale vegetation maps through UAV-based remote sensing 
surveys in the future.

Within the Sedgeland-complex class, the composition of 
species varies from one region in the swamps to another, 

Fig. 8 Classification map of swamp site-1 and site-2 vegetation classes and species produced with a UAV-hyperspectral and b UAV-LiDAR data, 
using support vector machine classifier
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5 Conclusions

Traditional satellite and airborne remote sensing have been 
widely used tools in scientific research and environmen-
tal monitoring at global and regional levels. Its adoption 
in fine-scale monitoring and mapping related applications 
has been challenging due to limited spatial resolution, 
atmospheric noise and cloud cover. The advent of near-
earth imaging systems such as UAV-LiDAR has offered the 
potential for detailed mapping and monitoring of landcover 
units. Although these systems are popular in allied disci-
plines such as agriculture and forestry, their application for 
monitoring complex ecosystems and environments such as 
swamps has been limited. This is partly due to the absence 
of an existing methodological framework and challenges in 
using UAV-based sensor systems in these sensitive and com-
plex environments. The primary objective of this research 
was to develop a functional UAV-based LiDAR sensing 
system, including a workflow to generate accurate datasets 
and products for environmental monitoring applications. A 
critical review was undertaken to identify the current state 
and limitations of UAV-based LiDAR technologies for 
mine environmental monitoring research. Several issues 
that make effective use of these technologies challenging 
for seamless data generation and processing were identified 
and resolved, leading to the classification of complex vege-
tation communities in sensitive ecosystems. The technology 
and methodology demonstrated herein would be potentially 
valuable in identifying changing conditions or the health of 
ecosystems. The UAV-LiDAR system would be valuable for 
mapping the composition of THPSS vegetation communi-
ties at an unprecedented scale and accuracy. Future research 
would also include investigating machine learning and deep 
learning classification algorithms to improve the delineation 
of vegetation species and communities.
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