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Abstract
Connected vehicles enabled by communication technologies have the potential to improve traffic mobility and enhance road-
way safety such that traffic information can be shared among vehicles and infrastructure. Fruitful speed advisory strategies 
have been proposed to smooth connected vehicle trajectories for better system performance with the help of different car-
following models. Yet, there has been no such comparison about the impacts of various car-following models on the advisory 
strategies. Further, most of the existing studies consider a deterministic vehicle arriving pattern. The resulting model is easy 
to approach yet not realistic in representing realistic traffic patterns. This study proposes an Individual Variable Speed Limit 
(IVSL) trajectory planning problem at a signalized intersection and investigates the impacts of three popular car-following 
models on the IVSL. Both deterministic and stochastic IVSL models are formulated, and their performance is tested with 
numerical experiments. The results show that, compared to the benchmark (i.e., without speed control), the proposed IVSL 
strategy with a deterministic arriving pattern achieves significant improvements in both mobility and fuel efficiency across 
different traffic levels with all three car-following models. The improvement of the IVSL with the Gipps’ model is the most 
remarkable. When the vehicle arriving patterns are stochastic, the IVSL improves travel time, fuel consumption, and system 
cost by 8.95%, 19.11%, and 11.37%, respectively, compared to the benchmark without speed control.
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1  Introduction

Stop-and-go waves frequently occur at a signalized intersec-
tion due to a full stop, abrupt acceleration, and deceleration. 
And this can compromise traffic mobility, increase safety 
hazards, and cause serious environmental effects. With the 
development of connected vehicles (CVs) and connected 
autonomous vehicles (CAVs), it is possible to obtain traffic 
information (e.g., traffic signal timing, vehicle speed, accel-
eration), and communicate between vehicle and vehicle/
infrastructure, then help/control vehicles to drive smoothly 
through advisory speed limit. Numerous speed control stud-
ies have been conducted to improve traffic efficiency, safety, 
and fuel economy, such as Optimal Speed Advisory (OSA) 
(Mahler and Vahidi 2012; Wan et al. 2016), Green Light 
Optimal Speed Advisory (GLOSA) (Nguyen et al. 2016), 

Eco-driving (De Nunzio et al. 2016; Jiang et al. 2017; Huang 
et al. 2018; Guo et al. 2021), Eco-Cooperative Adaptive 
Cruise Control (ECACC) (Kamalanathsharma et al. 2013; 
Yang et al. 2017), Variable Speed Limit (VSL) (Yang et al. 
2013; Ubiergo and Jin 2016; Lyu et al. 2017; Yao et al. 2018) 
and trajectory smoothing (Zhou et al. 2017; Guo et al. 2019; 
Soleimaniamiri et al. 2020; Yao and Li 2021).

CAV technologies (Yang et al. 2017; Jiang et al. 2017; 
Shi and Li 2021a, b; Li et al. 2021), however, can control 
detailed vehicle trajectories in high resolution. They are rela-
tively future technologies and may not be implemented in 
the near future. Therefore, this paper focuses on connected 
manned vehicles. In other words, vehicles in this study are 
controlled by human drivers, though with assistance from 
individual vehicle-based information provided by the con-
nectivity technology. Most studies on speed control strate-
gies have focused on the algorithms for generating optimized 
speed profiles or vehicular trajectories. However, in practice, 
the driver’s behavior is stochastic, and it is difficult to predict 
the vehicle arriving patterns (i.e., arriving headway), and it is 
hard for a driver to exactly follow the optimal speed profiles 
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or trajectories. To make these speed control strategies more 
realistic, some research focused on driver's behavior based 
on eco-driving. Jamson et al. (2015) proposed in-vehicle 
eco-driving assistance aiming to investigate the most effec-
tive and acceptable in-vehicle system for the provision of 
guidance on fuel-efficient accelerator usage. Then, Pampel 
et al. (2015)studied the mental models of eco-driving that 
regular drivers have, and verified that in-vehicle guidance 
could increase driving safety compared to practicing eco-
driving without them. Xiang et al. (2015) developed a speed 
advisory model with driver’s behavior adaptability for eco-
driving, and it showed the proposed model could improve 
fuel economy. Li et al. (2016) proposed a modified stochastic 
model predicting a control-based energy management strat-
egy considering driver's behavior to improve fuel economy. 
Numerous researchers focused on the queue effect at a sig-
nalized intersection. He et al. (2015) presented a multi-stage 
optimal control formulation to obtain the fuel-optimal vehi-
cle trajectory on signalized arterial accounting for vehicle 
queue and traffic light status. Yang et al. (2017) developed an 
Eco-CACC algorithm considering queue effects to compute 
the fuel-optimum vehicle trajectory at a signalized intersec-
tion. Others studied the stochastic problems at a signalized 
intersection. Tong et al. (2015) utilized a stochastic program-
ming model for oversaturated intersection signal timing, 
considering the uncertainty in traffic demand to minimize 
the vehicle delay. Sun and Liu (2015) developed a stochastic 
eco-routing algorithm in a signalized traffic network, incor-
porating the stochastic traffic light condition into the Markov 
decision process (MDP). Further, in our previous work (Yao 
et al. 2018), we proposed a trajectory smoothing method 
based on Individual Variable Speed Limits (IVSL) with 
location optimization at a signalized intersection. Results 
show that the proposed IVSL strategy can greatly increase 
traffic efficiency and reduce fuel consumption.

In the above studies, car-following models were adopted 
to reproduce longitudinal human-driven vehicle behav-
iors, including the Newell’s model (Newell 2002), Gipps’ 
model (Gipps 1981), and IDM model (Treiber et al. 2000). 
However, the impacts of different car-following models on 
IVSL have not been investigated. Also, limited efforts have 
been made to consider stochastic vehicle arriving patterns. 
Without considering realistic stochastic traffic patterns, the 
resulting speed control strategies might not be feasible in the 
real world. This study is motivated to address the two limita-
tions. First, we compare three car-following models with the 
deterministic IVSL model. Then, we develop a two-stage 
stochastic IVSL optimization model considering the sto-
chastic vehicle arriving patterns. The Monte-Carlo method 
(Metropolis and Ulam 1949) and the DIRECT algorithm 

(Jones et al. 1993) are adopted to solve the stochastic IVSL 
model.

The rest of this paper is organized as follows. Section 2 
introduces the Individual Variable Speed Limit (IVSL) tra-
jectory planning problem. Section 3 first presents three dif-
ferent car-following models in the IVSL control strategy. 
Next, a deterministic IVSL model is formulated, as well as 
a two-stage stochastic IVSL model, which is integrated into 
the Monte-Carlo framework. Section 4 conducts numerical 
studies to test the model results. Section 5 concludes this 
paper and briefly discusses future research directions.

2 � Problem statement

This section introduces the IVSL trajectory planning 
problem.

2.1 � Road

As is shown in Fig. 1, a single-lane segment leading to a 
signalized intersection has a length of L . The traffic signal 
is installed at the segment exit at location L , and the traffic 
moves from location 0 to location L.

2.2 � Traffic signal

A fixed signal timing with an effective green time length of 
G , an effective red time of R , and a signal cycle length of 
Cwhich equals toG + R are considered. Without loss of gen-
erality, the system is started from the beginning of a green 
phase at time 0.

2.3 � Vehicles

Let � ∶= {1, 2,⋯ ,N} denote the set of all N vehicles. We 
assume that all vehicles have the same kinetic characteris-
tics and do not move back. Let xn(t) denote the trajectory of 
vehicle n ( n ∈ � ) at time t ( t ∈ [0, +∞) ). Thus vehicle n ’s 
trajectory is xn , and the set of all vehicle trajectories is 
denoted as� =

{
xn
}
n∈N

 . The first-order differential ̇of x
n
(t) is 

the speed of vehicle n at time t . We require ẋn(t) ∈
[
0, vmax

]
 

where vmax is the maximum allowed speed on this segment. 
And the second-order differential of ẍn(t) is the acceleration 
of vehicle n at time t . With slight abuse of the math, define 
the inverse function x−1

n
(l) ∶= argmintxn(t) = l,∀l ∈ [0, L] . 

A subset of vehicles, denoted by �C
⊂ � , are assumed to 

be equipped with an onboard unit that can receive real-time 
speed limits from the IVSLs while passing them.
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2.4 � Trajectory planning measures

Two IVSLs, i.e., IVSL1 and IVSL2, are set along the segment 
at locations L1 and L2 , respectively, where0 ≤ L1 ≤ L2 ≤ L . 
Each vehicle n proceeds in the following way before consider-
ing signals. Dynamic speed limits vn are provided to CVs when 
passing these two locations. It can be calculated by solving 

x
−1
n
(L) − x

−1
n

(
L1

)
=

(
vn−v

L1
n

d

)
+

(
L2−L1

vn

−
v
2

n
−

(
v
L1
n

)2

2d×vn

)
+

(
v
+
n
−vn

a

)   , 

where L , a , d , vmax , v
L1
n  , v+

n
 , x−1

n
(0) , x−1

n

(
L1
)
 and x−1

n
(L) are all 

known parameters and locations L1 and L2 are the variables to 
be optimized. Note that once L1 and L2 are given, vn can be 
easily solved.

Three car-following models are compared to show their 
impacts on IVSL strategies, such as the Gipps' model, mod-
ified Newell's model (M-Newell's model), and Intelligent 
Driver Model (IDM).

This paper is an extension based on the previous work of 
IVSL (Yao et al. 2018). IVSL utilizes onboard devices with 
V2I communications to smooth vehicle trajectories and 
eliminate full stops at a signalized intersection. It allows 
dynamic adjustment of speed limits for an individual vehi-
cle in response to real-time traffic states using in-vehicle 
displays. Figure 1 is the operations of the IVSL system. 
With the IVSL system, a trajectory smoothing method is 
proposed to improve traffic efficiency and decrease vehicle 

fuel consumption and emissions. This method uses two 
individual IVSLs to guide vehicles on this highway seg-
ment (which would otherwise be held stopped at the current 
or following red light phase) to drive smoothly without a 
full stop (if possible) and just hit the beginning of the next 
green light. Note that the IVSL essentially only needs to 
control some identified Target Control Vehicles (TCV) as 
lead vehicles of these platoons and the rest can be smoothed 
accordingly by just following the TCVs with their regular 
car-following behavior. In addition, noted that the queue 
effects of conventional vehicles and incompliant CV vehi-
cles (i.e., compliance rate) are considered. Further, the loca-
tions of these two IVSLs, i.e., IVSL1 and IVSL2, affect 
the smoothed trajectory shapes and need to be carefully 
selected to optimize the overall traffic performance. Dif-
fer from the previous work, vehicle arriving patterns (i.e., 
arriving headway) are varied with different traffic condi-
tions in a whole day, e.g., sparse traffic, intermediate traf-
fic, and dense traffic. Thus, stochastic arriving patterns are 
considered in IVSLs optimization is a two-stage problem 
called the Individual Variable Speed Limit with Stochastic 
Optimization (IVSL-SO). Before installing the IVSL sys-
tem, we can use historical data to estimate the vehicle tra-
jectories with the IVSL-SO and pre-set the IVSLs.

For convenience, Table 1 presents all parameters used in 
this paper.

Fig. 1   Illustration of the IVSL system
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Table 1   Descriptions of 
parameters

Parameter Description

xn(t) Location of the vehicle n (m)
ẋn(t) Speed of vehicle n (m/s)
ẍn(t) Acceleration of vehicle n (m/s2)
x−1
n
(l) Timestamp of vehicle n approaching location l (sec)

sn Gap between vehicle n and n − 1 (m)
s∗
n

Desired dynamical distance, especially in the IDM (m)
sj Minimum gap (m)
L Road segment length (m)
L
1

Location of IVSL1 (m)
L
2

Location of IVSL2 (m)
hn Arriving headway between vehicle n and n − 1 (m)
vn Speed limit of vehicle n (m/s)

v
L
1

n
Speed when each vehicle n hits the location L

1
 (m/s)

v+
n

Speed when each vehicle n passes the intersection (m/s)
vmax Maximum allowed speed (m/s)
vd Desired speed (m/s)
a Maximum acceleration (m/s2)
d Maximum deceleration (m/s2)
b Comfortable deceleration, especially in the IDM (m/s2)
a
free
n

Acceleration of free-flow traffic, especially in the Gipps’ model (m/s2)
a
cong
n

Acceleration of congested traffic, especially in the Gipps’ model (m/s2)
Δt Time gap (sec)
T Safe time headway, especially in the IDM (sec)
� Sensitivity coefficient, especially in the Gipps’ model (sec)
C Signal cycle length (sec)
G Effective green time length (sec)
R Effective red time length (sec)
tn1 Time interval of deceleration from t−

n1
 to t+

n1
 (sec)

tn2 Time interval of vehicle n moving at speed limit vn from t−
n2

 to t+
n2

 (sec)
tn3 Time interval of acceleration from t−

n3
 to t+

n3
 (sec)

tms
n

Starting timestamp of the merging process from free flow state to fol-
lowing state, especially in the M-Newell’s model (sec)

tme
n

Ending timestamp of the merging process from free flow state to fol-
lowing state, especially in the M-Newell’s model (sec)

TT(�) Measure 1, system travel time (sec)
FC(�) Measure 2, system fuel consumption (liter)
� Acceleration exponent, especially in the IDM
Kij Coefficient matrix for the VT-Micro model
Ω States set of traffic
ST State of sparse traffic
IT State of intermediate traffic
DT State of dense traffic
k Shape parameter of the Weibull distribution function
� Scale parameter of the Weibull distribution function
� Scenario
N Vehicle number
M Sample number
pST Probability of the sparse traffic for a whole day
pIT Probability of the intermediate traffic in a whole day
pDT Probability of dense traffic in a whole day
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3 � Methodology

This section first introduces three popular car-following 
models used in the IVSL. Next, IVSL models with a deter-
ministic vehicle arriving pattern and a stochastic arriving 
pattern are formulated, respectively.

3.1 � Car‑following models in the IVSL

3.1.1 � Gipps’ model

A simplified Gipps’ car-following model (Treiber and Kest-
ing 2013) is formulated as follows:

where, a is the maximum acceleration; Δt is the constant 
time gap; and vsafe

n

(
sn(t), ẋn−1(t)

)
 defines the “safe speed” 

(the highest possible speed for a vehicle n),

where, d is the maximum deceleration, it’s negative; 
sn(t) = xn−1(t) − xn(t) is the gap between vehicle n and n − 1 ; 
and sj is the minimum gap. To make the above car following 
law applicable to vehicle 1, we can simply set ẋ0(t) = vmax , 
s1(t) = ∞ , ∀t . And we use a set of limitations defined by 
(Gipps 1981) to govern the acceleration of vehicles except 
for the TCV:

where, afree
n

(t) is the acceleration of free-flow traffic, acongn (t) 
is the acceleration of congested traffic, and � is the sensitiv-
ity coefficient (1.2 s).

(1)ẋn(t + Δt) = FGipp
(
ẋn(t), ẋn−1(t), sn(t)

)
∶= min

[
ẋn(t) + a × Δt, vmax, v

safe
n

(
sn(t), ẋn−1(t)

)]
,

(2)vsafe
n

(
sn(t), ẋn−1(t)

)
= d × Δt +

√
d2 × Δt2 + ẋn−1(t)

2 − 2d ×
(
sn(t) − sj

)
,

(3)afree
n

(t) = 2.5 × a ×

(
1 −

ẋn(t)

vmax

)
×

√
0.025 +

ẋn(t)

vmax

,

(4)

acong
n

(t) =
1

𝜏
×

[
1

Δt
×

(
sn(t) − sj +

ẋn−1(t)
2 − ẋn(t)

2

2 × d

)
− ẋn(t)

]
,

(5)ẍn(t) = max
{
d, min

{
afree
n

(t), acong
n

(t)
}}

,

Once the vehicle n arrives at location 0, if it is a compli-
ant vehicle ( n ∈ �

C ), we can identify whether it is a TCV 
through the following hypothesis test. The hypothesis is that 
vehicle n is not a lead vehicle, and thus its trajectory can be 
predicted according to the Gipps’ car-following law up to the 
stop-line. If the exit time of vehicle n is in the middle of a 
green phase, i.e., iC < x−1

n
(L) ≤ G + iC , ∃i ∈ {0, 1,…} , then 

the hypothesis holds and vehicle n is not a TCV. In this case, 
vehicle n will proceed according to the Gipps’ car-following 
law without activating the IVSL. Otherwise, vehicle n would 
hit a green light if it just follows the preceding vehicle, and it 
thus shall be labeled as a TCV whose trajectory needs to be 
smoothed by the IVSL to pass the intersection at the begin-

ning of the next green phase. If vehicle n is a TCV, in addi-
tion to being constrained by the car-following law, it receives 
a variable speed limit vn at location L1 and will decelerate 

to vn from location L1 if its speed is greater than vn . At loca-
tion L2 , speed limit vn is lifted, and vehicle n proceeds only 
according to the Gipps’ car-following law.

If vehicle n is a non-compliant vehicle, in addi-
tion to the Gipps’ car-following law, we check 
whether it needs to stop at a red light. First, we let 
vehicle n just follow Gipps’ car-following law. If 
its exit time x−1

n
(L) is in a red phase, then we have 

x−1
n
(L) ∈

(
inC + G,

(
in + 1

)
C
]
 where in ∈ {0, 1,⋯} denotes 

the cycle index for this red light violation. In this case, we 
set ẋ

n
(t) = min

{
F
Gipp

(
ẋ
n
(t), ẋ

n−1(t), sn(t)
)
,FGipp

(
ẋ
n
(t), 0,L − x

n
(t)
)} 

when t ≤
(
in + 1

)
C and ẋn(t) = FGipp

(
ẋn(t), ẋn−1(t), sn(t)

)
 

when t >
(
in + 1

)
C . Otherwise, if x−1

n
(L) is green, then 

vehicle n only follows the Gipps’ car-following law. This 
case can be incorporated into the previous formulations by 
setting in = −1.

With all these operation rules, the system dynamics are 
described as follows:

(6)
ẋn(t + Δt) =

{
min

{
FGipp

(
ẋn(t), ẋn−1(t), sn(t)

)
, max

{
vn, ẋn(t) + d × Δt

}}
, if xn(t) ∈

[
L1, L2

]
;

FGipp
(
ẋn(t), ẋn−1(t), sn(t)

)
, otherwise,

if n is a TCV.

(7)ẋn(t + Δt) =

{
min

{
FGipp

(
ẋn(t), ẋn−1(t), sn(t)

)
,FGipp

(
ẋn(t), 0,L − xn(t)

)}
, if t ≤

(
in + 1

)
C;

FGipp
(
ẋn(t), ẋn−1(t), sn(t)

)
, otherwise,

if n is not a TCV.
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3.1.2 � Modified Newell’s model

A simplified Newell’s car-following model is proposed by 
(Newell 2002) as follows:

where sj is the minimum safe distance, vmax is the maximum 
allowed speed, and Δt is the time gap.

For a specific vehicle, if it can run in a state with the 
maximum allowed speed vmax , we say it is in a free-flow 
state, while if it has to run by following its tightly previous 
vehicle, it is defined to be in the following state. As shown 
in Fig. 2, according to the simplified Newell’s car-following 
model, if vehicle n runs in the following state when it enters 
the control area, we can derive its trajectory in the cyan 
solid curve by simply translating the trajectory of vehicle 
n − 1 . However, if vehicle n runs in the free-flow state when 

(8)xn(t + Δt) = xn(t) + ẋn(t + Δt) × Δt.

(9)xn(t + Δt) = FNewell
(
xn(t), xn−1(t)

)
: = min

{
xn−1(t) − sj, xn(t) + vmax × Δt

}

Fig. 2   Time–space trajectory diagram of “speed jump” Fig. 3   Time–space trajectory diagram after processing

it enters, its trajectory can be depicted in the solid yellow 
curve. After running in the free flow state for a while, vehi-
cle n will switch into the following state. As illustrated in 
Fig. 2, this state transition at the merging point between 
the solid yellow curve and cyan solid curve forms a "speed 
jump" rather than a smooth change, which is highlighted by 

a red circle. This phenomenon is not consistent with real-
world situations.

Here, referring to the processing method of Liu et al. 
(2012), we utilize two quadratic functions to smooth the 
state transition by approximating the original function at 
the merging point. The time–space trajectory diagram after 
processing is shown in Fig. 3.

As is shown in Fig. 3, for vehicle n , tms
n

 and tme
n

 are the 
starting and ending timestamps of the merging process sepa-
rately. Then, we can modify the simplified Newell’s model, 
called the M-Newell’s model,

So, at the timestamp tme
n

 , the speed and location of vehicle 
n should be equal to those derived by transferring the trajec-
tory of vehicle n − 1,

(10)
xn(t + Δt) =FM - Newell

(
xn(t), xn−1(t), t

ms
n
, tme
n

)

=

{
ẋn
(
x−1
n
(0)

)
×
(
t − x−1

n
(0)

)
+ 0.5 × d ×

(
t − x−1

n
(0)

)2
, if t ∈

[
tms
n
, tme
n

]
,

min
{
xn−1(t) − sj, xn(t) + vmax × Δt

}
, otherwise.

(11)
{

ẋn
(
tms
n

)
+ d ×

(
tme
n

− tms
n

)
= ẋn

(
tme
n

− Δt
)
,

ẋn
(
x−1
n
(0)

)
×
(
tme
n

− x−1
n
(0)

)
+ 0.5 × d ×

(
tme
n

− tms
n

)2
= xn−1

(
tme
n

− Δt
)
− sj

.
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According to the simplified Newell’s rule, the n − 1 vehi-
cle’s trajectory can be translated from the LEAD vehicle’s 
trajectory (the first vehicle in the platoon) when the n − 1 
vehicle is at the following state, thus Eq. (11) can be rewrit-
ten as:

To solve tms
n

 and tme
n

 from Eq. (12), three possible situa-
tions are considered:

(12)
{

ẋn
(
tms
n

)
+ d ×

(
tme
n

− tms
n

)
= ẋLEAD

(
tme
n

− n × Δt
)
,

ẋn
(
x−1
n
(0)

)
×
(
tme
n

− x−1
n
(0)

)
+ 0.5 × d ×

(
tme
n

− tms
n

)2
= xLEAD

(
tme
n

− n × Δt
)
− n × sj

.

(1)	 If tme
n

− n × Δt ∈ tLEAD1 , where tLEAD1 is the time inter-
val of deceleration for the LEAD vehicle. Equation (12) 
can be rewritten as:

Here t−
LEAD1

 is the timestamp starting deceleration of the 
LEAD vehicle.

(2)	 If tme
n

− n × Δt ∈ tLEAD2 , where tLEAD2 is the time inter-
val of LEAD vehicle moving at the speed limit vLEAD 
before hitting location L2 . Equation (12) can be rewrit-
ten as:

(13)

⎧⎪⎪⎨⎪⎪⎩

ẋn
�
x−1
n
(0)

�
+ d ×

�
tme
n

− tms
n

�
= ẋLEAD

�
x−1
n
(0)

�
+ d ×

�
tme
n

− n × Δt − t−
LEAD1

�

ẋn
�
x−1
n
(0)

�
×
�
tme
n

− x−1
n
(0)

�
+ 0.5 × d ×

�
tme
n

− tms
n

�2
= L1 + ẋLEAD

�
x−1
n
(0)

�
×
�
tme
n

− n × Δt − t−
LEAD1

�

+0.5 × d ×
�
tme
n

− n × Δt − t−
LEAD1

�2
− n × sj.

Here t−
LEAD2

 is the timestamp starting cruising during 
tLEAD2.

(3)	 If tme
n

− n × Δt ∈ tLEAD3 , where tLEAD3 is the time inter-
val of acceleration for the LEAD vehicle. Equation (12) 
can be rewritten as:

Here t−
LEAD3

 is the timestamp starting acceleration of 
the LEAD vehicle.

(15)
⎧
⎪⎨⎪⎩

ẋn
�
x−1
n
(0)

�
+ d ×

�
tme
n

− tms
n

�
= vLEAD + a ×

�
tme
n

− n × Δt − t−
LEAD3

�
,

ẋn
�
x−1
n
(0)

�
×
�
tme
n

− x−1
n
(0)

�
+ 0.5 × d ×

�
tme
n

− tms
n

�2
=

L1 + L2 + vLEAD ×
�
tme
n

− n × Δt − t−
LEAD3

�
+ 0.5 ×

�
tme
n

− n × Δt − t−
LEAD3

�2
− n × sj.

(14)
⎧⎪⎨⎪⎩

ẋn
�
x−1
n
(0)

�
+ d ×

�
tme
n

− tms
n

�
= vLEAD,

ẋn
�
x−1
n
(0)

�
×
�
tme
n

− x−1
n
(0)

�
+ 0.5 × d ×

�
tme
n

− tms
n

�2
= L1 + ẋLEAD

�
x−1
n
(0)

�
× tLEAD1

+0.5 × d × t2
LEAD1

+ vLEAD ×
�
tme
n

− n × Δt − t−
LEAD2

�
− n × sj.

In Eqs. (13)–(15), only tms
n

 and tme
n

 are variables, so by 
solving Eqs. (13)–(15), we can get three combinations of tms

n
 

and tme
n

 . However, in practice, only one situation among the 
three can actually happen, so only one of the three solutions 
makes sense (i.e., only one solved tme

n
 is consistent with its 

assumption condition). Once get the starting timestamp tms
n

 
and ending timestamp tme

n
 of merging, we can derive the 

vehicle’s trajectory with no “speed jump”.
Thus, the system dynamics can be described with the 

M-Newell’s model as follows:

xn(t + Δt) =

⎧⎪⎨⎪⎩

min

�
FM - Newell

�
xn(t), xn−1(t), t

ms
n
, tme
n

�
,

max
�
xn(t) + vn × Δt, xn(t) + ẋn(t) × Δt + 0.5 × d × Δt2

�
�
, if xn(t) ∈

�
L1, L2

�
;

FM - Newell
�
xn(t), xn−1(t), t

ms
n
, tme
n

�
, otherwise,
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3.1.3 � IDM

The IDM (Treiber et al. 2000) is presented in the following 
equations:

(16)if n is a TCV.

xn(t + Δt) =

⎧
⎪⎨⎪⎩

min

�
FM - Newell

�
xn(t), xn−1(t), t

ms
n
, tme
n

�
,

max
�
xn(t) + vn × Δt, xn(t) + ẋn(t) × Δt + 0.5 × d × Δt2

�
�
, if t ≤

�
in + 1

�
C;

FM - Newell
�
xn(t), xn−1(t), t

ms
n
, tme
n

�
, otherwise,

(17)if n is not a TCV.

(18)ẋn(t + Δt) = max(0,
(
xn(t + Δt) − xn(t)

)
∕Δt).

(19)ẍn(t + Δt) =
(
ẋn(t + Δt) − ẋn(t)

)
∕Δt

Table 2   Coefficients for fuel consumption (the unit of fuel consump-
tion, speed, and acceleration are in �∕� , �∕� , and �∕�2 , respectively)

Kij j = 0 j = 1 j = 2 j = 3

i = 0 − 7.537 0.4438 0.1716 -0.0420
i = 1 0.0973 0.0518 0.0029 − 0.0071
i = 2 − 0.0030 − 7.42 × 10−4 1.09 × 10−4 1.16 × 10−4

i = 3 5.3 × 10−5 6 × 10−6 − 1 × 10−5 − 6 × 10−6

here vd is the desired speed, T  is thse safe time headway 
(1.6 s), � is the acceleration exponent (4, dimensionless), b 
is the comfortable deceleration.

The model is divided into a “desired” acceleration on a 
free road, and a braking acceleration induced by the preced-
ing vehicle. The acceleration on a free road decreases from 
the initial maximum acceleration a to zero while the 

(20)ẍn(t) = FIDM
(
ẋn(t), ẋn−1(t), sn(t)

)
∶= max

{
d, a ⋅

[
1 −

(
ẋn(t)

vd

)𝛿

−

(
s∗
n
(t)

sn(t)

)2
]}

,

(21)

s∗
n
(t) = sj +max

�
0, ẋn(t) ⋅ T +

ẋn(t) ⋅
�
ẋn(t) − ẋn−1(t)

�

2 ⋅
√
a ⋅ �b�

�

vehicle’s speed approaches the specified speed limit, 
ẍn(t) = a ⋅

[
1 −

(
ẋn(t)∕vd

)𝛿] is utilized to express the ten-

dency of acceleration. The braking term is based on a com-
parison between the “desired dynamical distance” s∗

n
 , and 

the actual distance to the front vehicle. If the spacing is 
approximately equal to s∗

n
 , then the breaking acceleration 

part of the model essentially compensates for the free accel-
eration part, so the resulting acceleration is nearly zero.

And the system dynamics can be presented in the follow-
ing equations:

ẍn(t) =

{
min

{
F
IDM

(
ẋn(t), ẋn−1(t), sn(t)

)
, max{0, d}

}
, if xn(t) ∈

[
L1, L2

]
;

F
IDM

(
ẋn(t), ẋn−1(t), sn(t)

)
, otherwise,

(22)if n is a TCV.

ẍn(t) =

{
min

{
FIDM

(
ẋn(t), ẋn−1(t), sn(t)

)
,FIDM

(
ẋn(t), 0,L − xn(t)

)}
, if t ≤

(
in + 1

)
C;

FIDM
(
ẋn(t), ẋn−1(t), sn(t)

)
, otherwise,

3.2 � Deterministic IVSL optimization

Once the set of all trajectories � =
{
xn
}
n∈N

 is solved with 
car-following models, we use the following measures to 
evaluate the system's performance. Essentially, all trajec-
tories � =

{
xn
}
n∈N

 can be uniquely solved once locations 
L1 and L2 are given, and we thus denote these trajectories 
as functionals �

(
L1, L2

)
 . More details of the deterministic 

model can be found in Yao et al. (Yao et al. 2018). Therefore, 
all measures defined later depending on � can be equiva-
lently denoted as functions of these two locations.

Measure 1: Travel Time (TT). For N vehicles, their total 
travel time, which indicates the traffic efficiency, is com-
puted as follows:

(23)if n is not a TCV.

(24)ẋn(t + Δt) = max(0, xn(t) + ẍn(t) × Δt).

(25)xn(t + Δt) = xn(t) + ẋn(t + Δt) × Δt.
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Measure 2: Fuel Consumption (FC). Based on the VT-
micro vehicle fuel consumption and emission model (Ahn 
et  al. 1999), we can measure total fuel consumption as 
follows:

where i and j are the power indexes, Kij is a constant coeffi-
cient (Zegeye et al. 2013), ẋn(t) means the first-order deriva-
tive of xn(t) (or velocity), and ẍn(t) means the second-order 
derivative of xn(t) (or acceleration). The coefficients matrix 
for 

{
Kij

}
 is shown in Table 2.

For a given vehicle arriving pattern, locations of two 
IVSLs should be optimized with total travel time ( TT ) and 
total fuel consumption ( FC ) measures of the proposed IVSL 
method. The overall performance objective SC

(
L1, L2

)
 can 

be formulated as one of, a weighted summation of, or a vec-
tor of measures (26) and (27):

Weights �T and �F can be simply obtained as the dollar 
value of unit travel time and unit fuel consumption. Then, 
the IVSL location optimization problem can be formulated 
as follows:

s.t.

(26)TT
(
L1, L2

)
=

N∑
n=1

(
x−1
n
(L) − x−1

n
(0)

)
.

(27)

FC
(
L1, L2

)
=

N∑
n=1

x−1
n
(L)

∫
x−1
n
(0)

exp

{
3∑
i=0

3∑
j=0

Kij

(
ẋn(t)

)i(
ẍn(t)

)j
}

dt,

(28)SC
(
L1, L2

)
= �TTT

(
L1, L2

)
+ �FFC

(
L1, L2

)

(29)minL1,L2SC
(
L1, L2

)
,

(30)L −
v2
max

2a
≤ L2 ≤ L

(31)0 ≤ L1 ≤ L2 −
v2
max

2d
.

(32)

and �
�
L1, L2

�
=

⎧
⎪⎨⎪⎩

�
x
n

�
n∈N, Gipps

, if subject to Equations(1) − (8);�
x
n

�
n∈N, M - Newell

, if subject to Equations(9) − (19);�
x
n

�
n∈N, IDM

, if subject to Equations(20) − (25).

Constraint (30) confines the location of IVSL2 to 
this effective range. Although a feasible L2 could be less 
than L − v2

max
∕2a , the oscillation of vehicle trajectory is 

dependent on the deceleration/acceleration. The influ-
ence of acceleration is the same (i.e., L2 ≤ L − v2

max
∕2a 

and L2 = L − v2
max

∕2a yield the same optimal objec-
tive value) when L2 ≤ L − v2

max
∕2a , and the perfor-

mance of the objective is independent of location L2 
whenever L2 ≤ L − v2

max
∕2a . Therefore, we just consider 

L2 ≥ L − v2
max

∕2a to simplify the formulation and improve 
optimization efficiency. Constraint (31) ensures there is 
enough spacing for a vehicle decelerating from vmax to any 
speed limit vn imposed by IVSL1 before hitting IVSL2, and 
IVSL1 is set along the segment L . Constraint (32) means that 
the set of all the vehicles' trajectories �

(
L1, L2

)
=
{
xn
}
n∈N

 
are generated by the simulation described above with differ-
ent car-following models (i.e., Eqs. (1)–(8)  for the Gipps’ 
model, Eqs. (9)–(19)  for the M-Newell’s model, and 
Eqs. (20)–(25) for the IDM).

Since this optimization problem is not necessarily mono-
tone or convex, we must numerically search for the opti-
mal solution. To improve the search efficiency and solution 
quality, we apply the DIRECT method to search the global 
optimum instead of a linear search. A typical iteration of the 
DIRECT algorithm integrating the IVSL based simulation 
is illustrated in Fig. 4. For each candidate location of L1 and 
L2 , the simulation is called to output the system performance 
measures. Then based on the evaluation of system perfor-
mance, the DIRECT decides the next candidate L1 and L2 
values by dividing Hyper-Rectangles. This iteration will be 
repeated until the near-optimal solution of L1 and L2 is found. 
Please refer to Jones (1993) for the detail of this algorithm.

3.3 � Two‑stage stochastic IVSL optimization

However, the vehicle arriving pattern (i.e., � =
{
hn
}
n=2,3,…,N

 , 
arriving headway set) is uncertain in practice, we need to 
develop a two-stage stochastic IVSL optimization (IVSL-
SO) model considering the uncertain fluctuation in �.

To better describe the uncertain vehicle arriving pat-
tern, we assume � as a random variable vector whose prob-
ability distribution is known based on previous work. And 
it should be pointed out that an intersection experiences 
different demand levels at different times (e.g., a simple 
classification can include sparse traffic, intermediate traf-
fic, and dense traffic) during a whole day. To be simplified, 
the set of three traffic demand levels in a whole day can 
be denoted as Ω = {ST , IT ,DT} with a simple distribution: 
Volume/Capacity = 0.32 (sparse traffic) with probability 
pST  , 0.68 (intermediate traffic) with probability pIT  and 
0.84 (dense traffic) with probability pDT  , where Volume 
is the traffic flow on a given road which can be described 

Fig. 4   A typical iteration of the DIRECT algorithm
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by � , Capacity is the maximum traffic flow on a given 
road, and pST , pIT , pDT is the probability of sparse, inter-
mediate, and dense traffic, respectively. And we also set 
pST + pIT + pDT = 1.

According to May (1990), it is assumed that � follows: 
1) negative exponential distribution for sparse traffic; 2) 
Pearson Type III distribution for intermediate traffic; and 3) 
normal distribution for dense traffic. To compact the three 
different random distribution functions, the Weibull distribu-
tion (Weibull 1951) with different parameters is employed 
here. The probability density function of the Weibull distri-
bution is given below:

Here h is the continuous headway, and we can discrete it to 
hn = xn(0) − xn−1(0), n = 2, 3,… ,N , i.e., the arriving head-
way between vehicle n and n − 1 , k > 0 is the shape param-
eter and 𝜆 > 0 is the scale parameter of the distribution. 
According to Weibull, the mean value is �Γ(1 + 1∕k) where 
Γ(⋅) is the Gama function. Thus, when k = 0.5 and � = 2.125 , 
it is a negative exponential distribution (i.e., sparse traffic); 
when k = 1.5 and � = 1.0423 , it has a similar shape to the 
Pearson Type III distribution (i.e., intermediate traffic); and 
when k = 3 and � = 0.4267 , it is the same shape as the nor-
mal distribution (i.e., dense traffic).

Since stochastic vehicle arriving headway is incorporated, 
we assume � as the random vector with known distribu-
tion subjected to Eq. (33), and �� as its realization under 
scenario �.

Then, we extend the deterministic optimization model 
(29) into a two-stage stochastic optimization model. In the 
first stage master problem, we determine the location of L1 
and L2 , subject to the deterministic constraints on the allow-
able location setting range. In the second stage sub-problem, 
we evaluate the total travel time ( TT ) and the total fuel con-
sumption ( FC ) measures of L1 and L2 under scenario �.

The first stage of the stochastic optimization model con-
siders the expected location of EL1 and EL2 is formulated 
as follows:

s.t.

(33)fweibull(h;𝜆, k) =

{
k

𝜆

(
h

𝜆

)k−1

e−(h∕𝜆)
k

, h ≥ 0;

0, h< 0.

(34)minEL1,EL2
E
[
Q
(
L�
1
, L�

2
, ��

)]
,

(35)L −
v2
max

2a
≤ EL2 ≤ L,

(36)0 ≤ EL1 ≤ EL2 −
v2
max

2d
,

where � is a scenario that is included in Ω with three states, 
each state determines a distribution of �� ; Q

(
L�
1
, L�

2
, ��

)
 

is the optimal objection function value of the second stage 
problem under the first stage solution (E L1,EL2 ) and vehicle 
arriving headway set � under scenario � ; E

[
Q
(
L�
1
, L�

2
, ��

)]
 

is the expectation value.
According to Eq. (33), the second stage scenario sub-

problem can be formulated as follows:

s.t.

(37)Q
(
L�
1
, L�

2
, ��

)
= minL�

1
,L�

2
SC(��, ��),

(38)L −
v2
max

2a
≤ L�

2
≤ L.

(39)0 ≤ L�
1
≤ L�

2
−

v2
max

2d
.

(40)
�
�
(
L�
1
, L�

2

)
=
{
x�
n

}
n∈N,M - Newell

, subject to Equations (9) − (19).

Fig. 5   Framework of the IVSL-SO system
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(41)

�
� =

{
h
�

n

}
n=2,3,…,N

=�
ST

× f
weibull(h;2.125, 0.5)

+ �
IT
× f

weibull(h;1.0423, 1.5)

+ �
DT

× f
weibull(h;0.4267, 3).

(42)�ST =

{
1, if � ∈ ST;

0, else.

(43)�IT =

{
1, if � ∈ IT;

0, else.

(44)�DT =

{
1, if � ∈ DT;

0, else.

Here 
(
L�
1
, L�

2

)
 is decision variables under scenario � , and 

they must follow constraints (38) and (39). Constraint (40) 
depicts the set of all the vehicles' trajectories 
�
� ≥

{
x�
n

}
n∈N, M-Newell

 under scenario �, which are generated 
by the simulation with the M-Newell’s model described in 

(45)ST = pST × Ω.

(46)IT = pIT × Ω.

(47)DT = pDT × Ω.

(48)Ω = {ST , IT ,DT}.

(49)pST + pIT + pDT = 1.

Table 3   Result comparison for three different car-following models

Model Parameter IVSL-Gipps / benchmark IVSL-M-Newell / 
benchmark

IVSL-IDM / benchmark

Sparse traffic Travel time (min) 72.52 / 75.55 72.37 / 74.93 79.33 / 84.30
Fuel consumption (liter) 7.06 / 8.30 7.56 / 7.97 7.52 / 8.29
System cost ($) 31.23 / 33.49 31.69 / 32.94 33.96 / 36.39
Solution time (sec) 357.00 94.12 220.69

Intermediate traffic Travel time (min) 84.48 / 93.20 84.28 / 91.82 104.30 / 110.67
Fuel consumption (liter) 8.04 / 10.33 8.07 / 9.72 8.04 / 10.09
System cost ($) 36.18 / 41.40 36.17 / 40.33 42.81 / 46.98
Solution time (sec) 319.63 100.64 255.16

Dense traffic Travel time (min) 106.02 / 114.47 105.85 / 113.08 126.17 / 131.93
Fuel consumption (liter) 9.12 / 12.30 9.02 / 11.49 9.06 / 11.43
System cost ($) 44.46 / 50.46 44.30 / 49.18 51.10 / 55.41
Solution time (sec) 346.88 99.99 214.68

Fig. 6   The performance results of 4955 samples
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Sect. 3 (i.e., Equations (9) − (19) ). Constraints (41)-(49) 
describe the headway is generated by the Weibull distribu-
tion function with different parameters according to three 
different traffic states, i.e., sparse traffic, intermediate traffic, 
and dense traffic.

One solution method of the two-stage stochastic optimi-
zation is to replace the expectation in the master problem 
with a sample mean estimator with a smaller size than the 
original sample space. And a common approach to reduc-
ing the scenario set to manageable sample size is using the 
Monte Carlo simulation. In this paper, we generate a random 
sample and use the sample mean estimator to approximate 
the expectation in the original scenario space. Thus, the 
first stage master problem is approximated by the sample 
average,

s.t.,

where M  is the number of samples, L1 =
1

M

M∑
j=1

L
j

1
 and 

L2 =
1

M

M∑
j=1

L
j

2
 are approximated to the expected locations EL1 

and EL2 , respectively.
This is also known as the Sample Average Approximation 

method. A typical framework of the Monte-Carlo method 
with the DIRECT algorithm integrating the IVSL is illus-
trated in Fig. 5. And IVSL-SO is built on this framework to 
find the optimal sample average.

4 � Numerical experiments

In this section, we use numerical experiments to test the 
performance of the proposed IVSL models.

4.1 � Deterministic optimization results

In this subsection, we use numerical experiments to test the 
performance of the deterministic IVSL with different car-
following models. The parameters are set to the following 
values at default: L = 800m , N = 60 , sj = 10m , Δt = 1 sec , 
vmax = 16m∕s , ẋ1

(
x−1
1
(0)

)
= vmax , a = 2m∕s2 , d = −3m∕s2 , 

G = 50 sec , C = 100 sec , �T = 20$∕hour , �F = 1$∕liter

(50)min
L1,L2

1

M

M∑
j=1

Q
(
L
j

1
, L

j

2
, �j

)
,

(51)L −
v2
max

2a
≤ L2 ≤ L,

(52)0 ≤ L1 ≤ L2 −
v2
max

2d
,

,� = 1.2 sec , vd = 16m/s , T = 0.85 s , b = −3m∕s2 , � = 4 
and the saturation time headway is 2 s (Yao et al. 2018).

Table 3 shows the comparison results for the IVSL with 
three different car-following models depending on the traf-
fic levels. And the measurements include the system travel 
time (min), the system fuel consumption (liter), the system 
cost ($), and solution time (sec). In Table 3, IVSL-Gipps, 
IVSL-M-Newell, and IVSL-IDM represent the IVSL with 
the Gipps' model, the modified Newell's model, and the 
IDM, respectively. All three models are used in the joint 
optimization to optimize the system cost, combined with 
travel time and fuel consumption. Table 3 shows the results 
under control and without control (i.e., benchmark, shown 
after the slash symbol). And Fig. 6 presents the increment 
rate of the IVSL with three car-following models compared 
to the benchmark, respectively.

As shown in Table 3, with all three car-following models, 
the IVSL strategy can significantly improve both mobility 
and the environment as the traffic level increases. The effect 
of the IVSL-Gipps model is the most remarkable. This is 
probably because that the Gipps’ model has more parameters 
than the IDM and M-Newell’s model to reflect the vehicular 
dynamic, thus it can be more accurate to present the effect 
of the IVSL strategy. And the tendencies of the IVSL-Gipps 
model and IVSL-M-Newell model are approximately the 
same, but the IVSL-IDM is totally different. The results 
of the IVSL-IDM are a little higher than the IVSL-Gipps 
and IVSL-M-Newell in Table 3. This is probably due to the 
instability of the IDM, i.e., the oscillation of speed occurs in 
the free-flow state. Then we assume traffic level in a whole 
day follows a specific distribution (i.e., the probability of 
intermediate traffic, sparse traffic, and dense traffic are 1/2, 
1/4, and 1/4, respectively). And we can calculate the average 
increment rate of the system cost per day, which is 10.96% 

Table 4   Performance of the Monte-Carlo method with various sam-
ple numbers

Sample number 100 500 1000 4955

TT(min) 87.16 86.54 86.58 86.70

SD_ TT (min) 2.49 1.42 1.05 0.49

FC(liter) 7.84 7.85 7.86 7.86

SD_ FC (liter) 0.07 0.04 0.03 0.01

SC($) 36.89 36.70 36.72 36.76

SD_ SC ($) 0.90 0.50 0.37 0.17

L
1
(m) 14.27 12.60 12.95 12.24

SD_ L
1
 (m) 4.84 2.27 1.65 0.79

L
2
(m) 764.26 763.15 762.50 762.82

SD_ L
2
 (m) 1.89 0.96 0.81 0.46
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for the IVSL-Gipps model, 8.59% for the IVSL-M-Newell 
model, and 8.05% for the IVSL-IDM. That means the IVSL-
Gipps model has the best performance, and the IVSL-M-
Newell model is a little worse than the IVSL-Gipps model. 
On the other hand, the IVSL-Gipps model and IVSL-IDM 
cost more solution time than the IVSL-M-Newell model 
(2–4 times). As explained above, models with more param-
eters may cost higher solution time.

4.2 � Stochastic optimization results

This subsection conducts numerical experiments to test 
the performance of the stochastic IVSL (i.e., IVSL-SO). 
The parameters are set to the following values at default: 

L = 800m , N = 60 , sj = 10m , Δt = 1sec , vmax = 16m∕s , 
ẋ1
(
x−1
1
(0)

)
= vmax , a = 2m∕s2 , d = −3m∕s2 , G = 50 sec , 

C = 100 sec , �T = 20$∕hour , �F = 1$∕liter , pST = 0.25 , 
pIT = 0.5 , pDT = 0.25 . In Sect. 4.2.1, we vary the sample 
number M from 100 to 5000 to test the performance of the 
Monte-Carlo method. And in Sect. 4.2.2, according to the 
analysis in Sect. 4.2.1, we set a suitable sample number to 
investigate the performance of the IVSL-SO.

4.2.1 � Monte‑Carlo sample test

This section investigates the performance of the Monte-Carlo 
method with the DIRECT algorithm integrating the IVSL 
for selecting a suitable sample range. Here, we firstly use 
the Monte-Carlo method to generate 5000 samples, and then 
the Pauta criterion (Xiao et al. 2021) is presented to remove 
the worse samples (the final sample number is 4955). The 
performance results of 4955 samples are shown in Fig. 6. 
It illustrates that IVSL1 is located between 0 and 100 m, 
IVSL2 is set in the range between 730 and 790 m, and the 
optimal value oscillates from 26 to 45$ after the proposed 
optimization. And the color probability distribution follows 
the probability distribution of the traffic demand level in a 

Fig. 7   Performance of the Monte-Carlo method with various sample numbers

Fig. 8   Convergence result of the IVSL-SO

Table 5   Comparison result between the IVSL-SO and Benchmark

 Item Benchmark IVSL-SO Improvement 
(%)

TT(min) 92.86 84.55 8.95

FC(liter) 9.67 7.82 19.11

SC($) 40.62 36.00 11.37
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Fig. 9   Time–space trajectories with/without control under different scenarios
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whole day, i.e., the hotter one denotes the dense traffic, the 
colder one represents the sparse traffic, and the more part 
shows the probability of the intermediate traffic. These results 
demonstrate that the sample average can present a credible 
value due to a short fluctuation range. Thus, we can select the 
IVSLs according to this value.

Next, Table 4 and Fig. 7 present the performance of the 
Monte-Carlo method with varied sample numbers (i.e., 100, 
500, 1000, 4955). TT is the sample average of the system 
travel time, FC is the sample average of the system fuel con-
sumption, SC is the sample average of the system cost, L1 
is the sample average of the IVSL1’s location, and L2 is 
the sample average of the IVSL2’s location. And SD_ TT , 
SD_ FC , SD_ SC , SD_ L1 , and SD_ L2 denote the standard 
deviation of TT , FC , SC , L1 , and L2 , respectively. In the 
Monte-Carlo method, the sample average approximates the 
expected value.

As shown in Table 4 and Fig. 7, the expected measure-
ments (including travel time, fuel consumption, and joint 
system cost) and the expected locations (including IVSL1 
and IVSL2) become stable as the sample number increases. 
And TT is more susceptible than FC and SC to the varied 
sample number. In Fig. 7 b, L1 is almost stable below 500 
samples, and L2 is obviously fluctuant when the sample 
number is under 500. This is probably because that L1 is set 
to apply a speed limit value to the vehicle for deceleration, 
L2 is set to remove the speed limit value for acceleration, and 
the acceleration operation has a more obvious effect on sys-
tem measurements (especially travel time), and this makes 
sense why TT is more susceptible. From the above analyses, 
the sample number is set as 500 in the following part.

4.2.2 � Performance of the IVSL‑SO

In this section, we set the sample number equal to 500 to 
investigate the performance of the IVSL-SO. Accord-
ing to subsection 4.2.1, we can obtain the sample average 
through the Monte-Carlo method. Then, we can apply ran-
dom sampling ( M=500) from the total sample set (the total 
sample number is 4955), which follows the distribution of 
Ω = {ST , IT ,DT} . After a random sampling, a sample aver-
age is obtained. Subsequently, we set the sampling frequency 
as 50,000 to get the optimal sample average through the 
Monte-Carlo method.

The stochastic optimization of IVSL’s location requires a 
fast computation speed. As a result, IVSL-M-Newell model 
is chosen to be embedded in the Monte-Carlo simulation 
because it is the most computationally efficient without sig-
nificant loss of system cost compared to the IVSL-Gipps 
model and IVSL-IDM.

Figure 8 shows the convergence result of the IVSL-SO. 
We can find that the convergence result is excellent. And 
after 50,000 sampling frequencies, the optimal expected 
system cost converges to stable as SC

∗
= 36.00$, and the 

optimal expected locations are L1
∗
= 12.73 m and L2

∗
= 

762.51 m.
Table 5 shows the comparison results between the IVSL-

SO and Benchmark (i.e., without control). After 10,000 
sampling frequencies, the performance of the Benchmark 
is SC

B
=40.62$, FC

B
=9.67L and TT

B=80.15 min. Thus, the 
improvement in travel time, fuel consumption, and system 
cost is 8.95%, 19.11%, and 11.37%, respectively.

Figure 9 shows the time–space trajectories with/without 
control under specific scenarios, i.e., sparse traffic, inter-
mediate traffic, and dense traffic. Overall, we can see that 
the IVSL-SO can eliminate full stops as expected no mat-
ter which demand level is loaded. Vehicles inevitably suf-
fer from full stops when no extra control is imposed on the 
vehicle platoon except for the regular signal control (i.e., 
Benchmark). Figure 9 a, b, and cshow that increasing the 
demand level will incur more full stops, which is intuitive 
since longer waiting in front of the red signal results from 
a higher demand level. Especially in Fig. 9 c, stop times 
increase to 2 or 3. Whereas, we see that the IVSL-SO can 
well balance trajectory smoothing and queuing adjustment 
such that all vehicles can drive smoothly to the extent of not 
having full stops. This verifies the efficiency of the IVSL-
SO system.

5 � Conclusions

This paper first investigates the impacts of different car-
following models with the deterministic IVSL strategy in 
a CV environment at a signalized intersection. Then, we 
propose a stochastic IVSL model as a two-stage optimization 
problem considering the stochastic vehicle arriving patterns. 
We apply the Monte Carlo framework with the DIRECT 
algorithm to solve this problem. A set of numerical experi-
ments is conducted to test the model performance. Regard-
ing different car-following models (i.e., the Gipps’ model, 
modified Newell’s model, and IDM), results show that the 
Gipps’ model yields better results than the other models. 
This is probably because the safety features are considered 
in the Gipp’s model, which is more realistic. Further, the 
stochastic IVSL model is verified to improve 8.95% travel 
time, 19.11% fuel consumption, and 11.37% system cost 
compared to the benchmark without speed control.

In real-world applications, the proposed IVSL system 
requires a CV environment where V2X communications 
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(e.g., dedicated short-range communication [DSRC] and 
cellular vehicle-to-everything [C-V2X]) are enabled. Two 
virtual control points are set with the proposed stochastic 
optimization model and historical vehicle arriving patterns. 
Once a CV reaches the control point, it would send an advi-
sory speed to the CV, and thus the CV can smooth its trajec-
tory. Therefore, the IVSL system can be easily implemented 
with existing technologies and configurated per requirements 
(e.g., different geometry and traffic conditions).

Although the proposed model yields valuable benefits 
regarding travel time, fuel consumption, and system cost, sev-
eral research directions can be extended from this work. First, 
this paper only considers the longitudinal motions in a single-
lane road. The lateral motions (e.g., lane changing behaviors) 
should be considered in the future. Second, this paper only 
considers a small-scale problem with an isolated signalized 
intersection. It is valuable to investigate the speed control 
strategy on a larger scale (e.g., corridors and networks). Third, 
with the development of new energy vehicles (e.g., electrical 
vehicles), the energy performance might change and is not 
accurate with traditional fuel consumption models. It would 
be interesting to investigate the IVSL performance in new 
energy vehicles with new models and field data.
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