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Abstract
Acoustic emission (AE) signals contain substantial information about the internal fracture characteristics of rocks and are 
useful for revealing the laws governing the release of energy stored therein. Reported here is the evolution of rock failure 
with different master crack types  as investigated using Brazilian splitting tests (BSTs), direct shear tests (DSTs), and uni-
axial compression tests (UCTs). The AE parameters and typical modes of each fracture type were obtained, and the energy 
release characteristics of each fracture mechanism were discussed. From the observed changes in the AE parameters, the 
rock fracture process exhibits characteristics of staged intensification. The scale and energy level of crack activity in the 
BSTs were significantly lower than those in the DSTs and UCTs. The proportion of tensile cracks in the BSTs was 65%–75%, 
while the proportions of shear cracks in the DSTs and UCTs were 75%–85% and 70%–75%, respectively. During the rock 
loading process under different conditions, failure was accompanied by an increased number of shear cracks. The amplitude, 
duration, and rise time of the AE signal from rock failure were larger when the failure was dominated by shear cracks rather 
than tensile ones, and most of the medium- and high-energy signals had medium to low frequencies. After calculating the 
proposed energy amplitude ratio, the energy release of shear cracks was found to exceed that of tensile cracks at the same 
fracture scale.

Keywords Rock failure · Fracture mechanism · Acoustic emission · Master crack type · Energy release

1 Introduction

Acoustic emission (AE) from a material is when transient 
elastic waves are emitted locally from a rapid release of 
energy generated during the transition from an unstable 
high-energy state to a stable low-energy state caused by 

uneven stress distribution inside the material (He et al. 2010; 
Liu et al. 2021; Ebrahimian et al. 2019). AE signals contain 
key information about the evolution of rock failure, and so 
AE monitoring has become useful for determining the dam-
age and failure characteristics (Tschegg 2016; Yuan et al. 
2018; Kim et al. 2015), energy release process (Guo et al. 
2022; Qiao et al. 2022a), and instability precursor informa-
tion (He et al. 2022; Dou et al. 2020; Colombero et al. 2018) 
of rocks.

Based on the similarities and differences in AE charac-
teristics of different fracture sources, research has been con-
ducted on rocks with different properties (Nejati and Ghaz-
vinian 2014; Kharghani et al. 2021), mineral compositions 
(Bartmann et al. 2017), and degrees of cementation (Su et al. 
2020). The AE characteristics of brittle rocks and ductile 
ones have obvious differences, which is evident in the Felic-
ity effect of AE (Zhang et al. 2017; Rodríguez et al. 2016). 
This difference stems from the influence of rock bridges on 
the direction of crack propagation, as found in both origi-
nal mine rocks (Yang et al. 2021) and freeze-thawed and 
weathered rocks (Qiao et al. 2022b). Furthermore, the laws 
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governing AE in rock are also affected by sample size and 
structural effects (Tarokh 2017; Rodriguez 2019), and this 
has also been observed in rock-like materials (Lacidogna 
et al. 2019).

Considering the sensitivity of the AE signal to the stress 
state, there has been considerable focus on rock fractures 
with different load paths and rates (Vilhelm et al. 2017; Xie 
et al. 2020), stress levels (Huang 2021; Wang 2018), and 
loading methods (Sun et al. 2019; Chmel et al. 2019). Du 
et al. (2020) used AE to compare the differences in rock 
fracture modes and microcrack properties for several differ-
ent test types. Rocks have different crack types and propor-
tions at different loading stages (Yang et al. 2022; Moradian 
et al. 2016), and this too can be reflected by AE differences. 
Also, mutational AE points reflect the key nodes in the rock 
failure process: for example, high-energy event points can 
be used as damage points that define the boundary between 
stable and unstable failure stages (Zhai et al. 2021), high-
amplitude points can explain the energy released during 
crack formation (Chen et al. 2021), and the AE peak fre-
quency and the b value are very important for dividing the 
rock failure process (Munoz-Ibanez et al. 2021).

However, although the laws governing rock-fracture AE 
have been studied in various tests, there have been few tar-
geted comparative studies with different formation mecha-
nisms in different tests. Moreover, the relationship between 
the AE energies of different types of cracks is yet to be ana-
lyzed under the premise of a unified crack size. Based on 
this, to test and analyze the evolution process of rock failure 
dominated by either tensile or shear cracks, Brazilian split-
ting tests (BSTs), direct shear tests (DSTs), and uniaxial 
compression tests (UCTs) of two lithologies were conducted 

in this study. The AE parameters and typical modes of each 
fracture type are discussed, as are the energy–amplitude 
ratio (EAR)—which characterizes the energy released by 
the AE source at the same fracture scale—and the energy 
release characteristics of each rock fracture mechanism.

2  Specimen preparation and test details

2.1  Specimen preparation

To study the AE characteristics of different rock fracture 
types, BSTs, DSTs, and UCTs were performed. The test 
materials were marble and fine-grained sandstone, and 
rock specimens with the same lithology were divided from 
the same complete rock mass from an ore field in Jining, 
Shandong, China. For the tests, rock blocks were prepared 
as standard specimens of sizes ⌀50  mm × 25  mm  (cyl-
inder), 100  mm × 100  mm × 100  mm (cuboid), and 
50 mm × 50 mm × 100 mm (cuboid). A grinder was used 
to reduce the unevenness of the end faces to less than 0.2%, 
thereby ensuring that the machining accuracy was in line 
with the ISRM (International Society for Rock Mechanics 
and Rock Engineering) standard, as shown in Fig. 1.

2.2  Test system and scheme

The test system used in this study included loading and AE 
test systems, as shown in Fig. 2. The loading system incor-
porated an RLJW-2000 servo-controlled rock pressure test-
ing machine from the Key Laboratory of Mining Disaster 
Prevention and Control, Shandong University of Science 

Fig. 1  Specimen preparation
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and Technology, which provides a maximum axial force and 
axial displacement of 2000 kN and 100 mm, respectively, 
and has a sampling accuracy of ± 1% and a sampling fre-
quency of 5 Hz. Displacement loading at a loading rate of 
0.003 mm/s was used for the tests.

The AE test equipment was an AMSY-6 AE system 
(Vallen Company) with a sampling frequency of 10 MHz, 
a preamplifier gain of 34 dB, and a threshold of 45 dB. 
In a test, two AE sensors were arranged on the front and 
rear surfaces of the sample (one on the front and one on 

the back for the BST sample) so that the coupling surface 
was perpendicular to the potential main crack propagation 
surface and arranged on both sides of the main crack to 
collect the complete AE signals during the failure process. 
Vaseline was used to improve the coupling between the 
sensors and the sample. To ensure that inhomogeneous 
rock samples did not affect the test results, the samples 
were tested for size, density, and wave velocity and the six 
with the closest test results were selected. Table 1 gives 
the details of the six tested samples.

Fig. 2  Test system

Table 1  Details of tested samples

Type of test Specimen ID Lithology Length (mm) Width (mm) Height (mm) Density (g/cm3) Shear wave 
velocity 
(m/s)

Longitudinal 
wave velocity 
(m/s)

Uniaxial compression 
test

UCT-1 Sandstone 49.6 50.5 101.1 2.49 3314.54 3723.48
UCT-2 Marble 50.1 50.1 99.1 2.76 3601.24 4434.15

Brazilian split test BST-1 Sandstone 50.1 50.1 24.8 2.50 3461.01 3847.38
BST-2 Marble 50.0 50.0 25.2 2.74 3693.17 4508.29

Direct shear test DST-1 Sandstone 98.8 100.1 100.5 2.52 3314.54 3723.48
DST-2 Marble 101.2 100.6 99.6 2.70 3581.74 4371.73
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3  Evolution of acoustic emission of rocks 
with different loading methods

3.1  Acoustic emission counts and energy evolution 
law

The failure evolution of rocks is a macroscopic manifesta-
tion of the inoculation, initiation, propagation, and pen-
etration of internal microcracks, and this evolution in a 
sample is reflected by the characteristics of its loading 
time history. The AE signal is the most direct reflection of 
the crack activity in the rock mass, and the different laws 
governing how that signal changes can be used to obtain 
the stress state of the rock and divide the evolution stages 
of rock deformation and instability. Figure 3 shows the 
loading time-history characteristics of the six tests, as well 
as the AE counts and AE energy evolution laws.

According to the evolution law of loading, the evolu-
tion process of rock failure in the UCTs is divided into 
four stages: compaction, elasticity, crack propagation, and 
failure. In the compaction stage, the initial axial stress was 
small, the primary pores and microcracks inside the rock 
were compacted and closed, and few AE events occurred. 
In the elastic stage, recoverable elastic deformation 
occurred between the crystal particles after the internal 

congenital cracks closed; in this process, AE continu-
ously accumulates with the characteristics of low speed 
and energy, accompanied by friction and slip between the 
crystals. After the rock was loaded into the crack propa-
gation stage, macroscopic cracks inside the rock formed 
gradually and then expanded rapidly, while the load curve 
gradually became concave, the AE count increased rapidly, 
and the energy increased slightly. When the cracks inside 
the rock expanded to a critical state, the rock entered a 
failure stage in which the AE counts calmed after a period 
of high-speed accumulation. The AE energy correspond-
ing to the counting inflection point reached its peak value, 
and the rock was instantly unstable and damaged.

Rock failure in the BSTs and DSTs differed from that in 
the UCTs in four ways: (1) Unlike in the UCTs, there was 
almost no crack propagation stage in the BSTs and DSTs, 
and the failure process of the rock had transient characteris-
tics. (2) The compaction stage of the rock in the BSTs was 
longer, accounting for ca. 0.75 of the loading time. (3) In a 
DST, the specimen was subjected to axial stress, the maxi-
mum principal stress in the early stage of the compaction 
stage was inclined vertically, and the principal stress direc-
tion of the specimen changed under the action of gradually 
increasing shear stress. Therefore, during the compaction 
stage, the shear load of the rock sample increased initially 

Fig. 3  Load and AE time-history curves of samples: a UCT-1; b BST-1; c DST-1; d UCT-2; e BST-2; f DST-2
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and then decreased. (4) The AE counts and energy peaks 
in the three sandstone tests were both less than those in the 
three marble tests, and more AEs appeared in the early stage 
of loading, which clearly reflects the differences between 
different lithologic grain crystals.

3.2  Evolution of acoustic emission b value 
and activity S

The AE b value measures the state of crack development 
and change and is used mainly to describe the proportion of 
small-magnitude to large-magnitude fracture events inside 
the rock; a larger b value indicates that small and medium-
sized fracture events dominate, whereas a smaller b value 
indicates that large fracture events dominate. The AE b value 
is calculated (Liu et al. 2020) from

where N is the total number of AE events in the statistical 
window, a is the intercept constant of the relationship curve, 
and M is the AE magnitude, which is usually calculated by 
dividing the amplitude by 20 (i.e., M = A/20, where A is the 
AE amplitude.

The AE activity S is a physical quantity comprising the 
frequency, average energy level, and maximum energy level. 
It reflects the concentration degree of AE sources and the 
number of active cracks in the rock, and it is calculated 
(Yang et al. 2020) as

(1)log10 N = a − bM,

where msi is the magnitude of each AE event and ms is 
the magnitude of the maximum AE event in the statistical 
window.

Figure 4 shows how b and S varied with time in the 
six tests, showing similar evolution rules. In the compac-
tion stage, b and S showed the trend of increase–fluctua-
tion–decrease, indicating that the intensity of crack activity 
in this stage was low and that the microcracks were mainly 
small-scale fractures; however, the overall fracture scale 
increased gradually. In the elastic stage, b decreased but 
S continued to increase, reflecting native crack penetra-
tion inside the rock mass. Through a series of changes, the 
friction between crystal particles increased and secondary 
cracks extended gradually, causing the crack activity to pro-
gress from small-scale to large-scale burst crack activity. In 
the crack propagation stage, b remained low and S remained 
high, and the AE counts and energy in this stage increased 
significantly, indicating that the crack activity was domi-
nated by large-scale fractures, and high-energy AE events 
began to appear. In the failure stage, b reached its minimum 
value and S reached its maximum value, indicating that the 
crack activity in this stage had reached its maximum scale, 
highest energy level, and highest intensity in the loading 
process, thereby making the entire specimen unstable.

(2)

S = 0.117 lg (N + 1) + 0.029 lg
1

N

N
∑

i=1

100.075 msi + 0.00075 ms,

Fig. 4  Evolution curves of AE b and S values: a UCT-1; b BST-1; c DST-1; d UCT-2; e BST-2; f DST-2
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Note that the b values in the three types of test were very 
similar in the compaction stage. In this stage, the crack activ-
ity of the rock was dominated by the closure of the primary 
pores and microcracks, and the crack activity scale was unaf-
fected by the loading method. When the rock entered the 
failure stage, the values of b and S in the BSTs were lower 
than those in the UCTs and DSTs, indicating that the scale 
and energy level of macroscopic crack activity were lower 
in the BSTs. This law cannot be seen directly by looking at 
time-domain parameters such as AE counts and energy, but 
b and S allow such effects to be seen more intuitively.

4  Typical acoustic emission patterns 
of different rock fracture types

4.1  Identification of master crack types in different 
tests

The AE signals produced by different types of cracks in the 
process of initiation and propagation have their own typi-
cal characteristics, which are reflected by the relevant AE 
parameters. The ratio of AE rise time to AE amplitude (RA) 
and the average frequency (AF) based on AE time-domain 
parameters can be used to describe qualitatively the com-
position of shear and tensile cracks in a sample during the 
development stage and to determine the master crack type 
of rock failure. AF is calculated as

where C is the AE count and D is the duration, and RA is 
calculated as

where R is the AE rise time and A is the amplitude. In 
Japanese concrete building code JC MS-III B5706, k is the 
slope of the AF/RA dividing line, and signals with AF/RA < k 
(resp. ≥ k) are defined as those of shear (resp. tensile) frac-
ture (Gan et al. 2020). Although the partition parameter k 
of shear and tensile fracture varies with rock material and 
sensor type, the method for determining the rock fracture 
type based on k is based on many studies. Herein, the ver-
sion due to Ohno et al. (2010) is used, with k = 80 taken as 
the dividing criterion between shear and tensile fracture, i.e.,

and the results of the six tests are analyzed.
Figure 5 shows the results of the six tests. Comparing 

the proportions of tensile cracks in the failure processes of 

(3)AF =
C

D
,

(4)RA =
R

A
,

(5)crack type =

{

tensile crack AF∕RA ≥ 80

shear crack AF∕RA < 80
,

sandstone and marble, those in the DSTs were the lowest at 
21.8% and 15.8%, respectively. For shear cracks, the pro-
portions in the BSTs were the lowest at 25.3 and 31.4%, 
respectively, and those in the UCTs were 71.2% and 74.9%, 
respectively, which are between those in the BSTs and DSTs 
for the same lithology. These test results have practical 
importance for revealing rock failure modes and main crack 
types under different loading modes. In the DSTs, BSTs, and 
UCTs, the rock failure was dominated by shear, tensile, and 
shear cracks, respectively, and by comparing the test results 
for the two lithologies, in each test type, the sandstone con-
tained the higher proportion of tensile cracks.

4.2  Evolution of different types of cracks

Figure 6 shows the evolution of the different types of cracks 
during loading for the six groups of tests.

According to the results in Fig. 6, the number of mas-
ter cracks always remained high during the process of rock 
loading until failure under different conditions. However, 
the evolution law of the master crack differs with time under 
different loading conditions. In the UCTs, the two types of 
cracks maintained a trend of stable accumulation almost 
simultaneously in the compaction and elastic stages. The 
number of new cracks decreased significantly after entering 
the crack growth stage, and almost all the new cracks after 
entering the failure stage were master shear cracks. Although 
tensile cracks dominated the rock failure in the BSTs, the ini-
tiation and development of shear cracks also occurred from 
beginning to end. In the compaction and failure stages of 
the DSTs, there were many shear cracks, indicating that the 
crack activity in these two stages was more intense, whereas 
in the short crack-propagation stage, the few new cracks 
were almost all master shear cracks. Note that although the 
loading modes of the rocks were different, the number of 
shear cracks increased after entering the failure stage, which 
was caused by the inevitable shear slip interaction between 
the fractured rock blocks after the formation of the macro-
scopic fracture surface.

4.3  Spectral characteristics of different rock 
fracture types

AE signals are nonstationary, and the fast Fourier transform 
(FFT) is a classical spectral method for analyzing nonsta-
tionary signals (Zhang et al. 2019). The frequency spectral 
characteristics of the AE signals generated by rocks can be 
used to characterize the stress state, structure, and mechani-
cal properties, and several problems that are difficult to deal 
with in the time domain can be dealt with easily by using the 
acoustic emission eigen spectrum.

Figure  7 shows the time-varying curves of the load 
and AE peak frequency during the loading process of the 
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Fig. 5  Distributions of AF-RA: a UCT-1; b BST-1; c DST-1; d UCT-2; e BST-2; f DST-2

Fig. 6  Evolution of each type of crack: a UCT-1; b BST-1; c DST-1; d UCT-2; e BST-2; f DST-2
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six tests. The peak frequency in the fracture of a rock is 
related to its properties. For the sandstone samples, the AE 
peak frequencies were in the one band of 40–60 kHz in 
the BSTs, in the three bands of 25–50 kHz, 80–120 kHz, 
and 150–175 kHz in the DSTs, and in the four bands of 
25–60 kHz, 80–120 kHz, 150–175 kHz, and 280–310 kHz 
in the UCTs. For the marble samples, the peak frequen-
cies were ca. 25 kHz, 50 kHz, and 100 kHz in the BSTs, 
ca. 30 kHz in the DSTs, and in the four bands of 25–50 kHz, 
90–120 kHz, 150–170 kHz, and 290–300 kHz in the UCTs. 
Several peak frequency concentrated areas of the two groups 
of UCTs all contain BSTs and DSTs concentrated areas of 
the same lithology samples, and new concentrated areas 
appear at about 300 kHz. Also, as the loading progressed, 
the range of the AE peak frequency clearly expanded, so 
that range is closely related to both lithology and crack type.

In Fig. 7, the energy-level interval of the AE signal is 
indicated by different colors. To better summarize the 
law, events with energies in the intervals of [0,   105eu), 
 [105eu,   106eu), and  [106eu, + ∞) are defined as low-, 
medium-, and high-energy events, respectively. In the three 
types of tests, most AE signals were low-energy events, 
and the distribution of medium-to-high-energy events was 
closely related to the loading stage of the rock sample. In 
the BSTs, the medium-to-high-energy events in the com-
paction and elastic stages were all in the low-frequency 

band (~ 50 kHz), but in the crack propagation stage, they 
were in the middle-frequency band of 100–150 kHz. In the 
DSTs, there were many middle-to-high-energy events in the 
compaction and failure stages, and these were distributed in 
the middle-to-low-frequency band below 200 kHz. In the 
UCTs, a few medium-to-high-energy events appeared in 
the compaction and elastic stages, most of which were in 
the low-frequency band below 50 kHz. In the crack propa-
gation stage, the newly appeared medium-to-high-energy 
events tended to transition to the middle-frequency band. In 
general, the fracture signals with medium and high energies 
in the six tests were distributed densely in the compaction 
and failure stages, and most of these were in the middle- and 
low-frequency bands.

5  Energy release characteristics of cracks 
with different mechanisms

5.1  Acoustic emission signal characteristics 
of cracks with different mechanisms

The AE waveform information of different fracture types 
reflects the essential characteristics of different sources. Fig-
ure 8 shows the typical AE event waveform curves of rock 
failure in the six tests, providing a comparison and analysis 

Fig. 7  Distribution of AE peak frequency: a UCT-1; b BST-1; c DST-1; d UCT-2; e BST-2; f DST-2
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of the waveform characteristics of different crack types. The 
AE duration of sandstone was obviously affected by lithol-
ogy and less than that of marble. Under the same lithological 
conditions, the tensile AE sources had relatively short dura-
tions (less than 300 μs) and amplitudes (less than 0.1 V). 
The duration (700–800 μs) and amplitude (0.30–0.35 V) of 
the shear AE sources were obviously larger than those of 
the tensile sources, and the waveform rise time was longer. 
In general, the energy released by shear failure is greater 
than that released by tensile failure, and the average fre-
quency is lower than that of the tensile wave because energy 
is released in the form of shear waves (Zhang et al. 2020) 
during shear crack propagation.

5.2  Energy release characteristics of different 
mechanisms cracks

The AE of a rock fracture can be regarded as a stress tran-
sient from a mechanical perspective and a sudden energy 
release from a thermodynamic perspective. However, 
because of the differences in fracture scale and intensity, 
a simple comparison of the energy of each AE event can-
not completely reflect the energy release characteristics of 
different types of cracks. Therefore, it is necessary to intro-
duce a parameter that can reflect the energy released by 
cracks at the same fracture scale to compare and analyze 
the differences.

AE amplitude refers to the maximum amplitude of an AE 
signal waveform, which is an important parameter for char-
acterizing the strength of a signal and is positively correlated 
with the scale of crack propagation (Yang et al. 2020). AE 

energy is a parameter that reflects the strength of the signals 
and is affected by the crack type and material parameters. The 
correlation diagram of AE energy and amplitude can reflect 
the characteristics of different types of cracks to a certain 
extent. Therefore, based on the classification method men-
tioned in Sect. 3.1, the relationship between the AE energy 
and amplitude of the two types of cracks in the six tests was 
analyzed, as shown in Fig. 9. The AE energy and amplitude of 
the two types of cracks show a significant positive correlation, 
which can be expressed through a linear function as

where EAE is the AE energy (expressed in the form lg(EAE) 
to directly represent the energy level), AAE is the AE ampli-
tude, k is the slope of the fitting function (representing the 
relationship between the energy level and amplitude), and c 
is the intercept constant of the fitting function.

To better compare the relationship between the scale and 
energy level of different types of cracks, k in Eq. (6) is defined 
as the EAR, i.e.,

According to the results in Fig. 9, except in the two BSTs, 
the AE amplitudes and energies of tensile cracks in the other 
four tests were distributed evenly in a low range. The main 
cracks in the BSTs were tensile cracks, which is why those 
tests did not exhibit such characteristics. Figure 10 shows the 
EAR calculation results for the six tests. Notably, the EAR of 
the shear cracks was larger than that of the tensile cracks in all 
six tests, indicating that the energy release of the shear cracks 
was larger than that of the tensile cracks at the same crack 
scale. In addition, the EAR of marble was larger than that of 
sandstone in the same type of test; therefore, the EAR can be 
considered to reflect the characteristics of marble, releasing 
more energy when breaking to a certain extent. In practical 
engineering, the occurrence of intensive low-frequency and 
high-amplitude events in microseismic monitoring may be a 
precursor to the failure and instability of a coal–rock com-
posite structure at the source (Lu et al. 2019), and the energy 
released at this time will have a greater impact on the coal 
seam (Du et al. 2022). This is consistent with the AE char-
acteristics of shear-crack-dominated rock failure analyzed in 
this study, indicating that shear-crack-dominated coal and rock 
failure have a higher risk, which shows that the EAR has a 
certain reference significance for describing the energy release 
characteristics of cracks with different mechanisms.

(6)lg
(

EAE

)

= kAAE + b,

(7)EAR =
lg
(

EAE

)

− b

AAE

,

Fig. 8  AE waveform curves
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6  Discussion

6.1  Influence of lithology on acoustic emission 
characteristics

According to the results of this study, the two types of 
rock exhibit different performances in all aspects of AE 

parameters. In the same type of test, these differences are 
as follows.

(1) The AE counts and peak energy of sandstone were less 
than those of marble.

(2) The AE b value and activity S of sandstone were lower 
than those of marble.

(3) The proportion of tensile cracks was higher in sand-
stone.

(4) The total number of cracks in sandstone was less than 
that in marble.

(5) The EAR of sandstone was lower than that of marble. 
The difference between the two lithologies can be sum-
marized as follows: the AE frequency and intensity of 
sandstone are weaker than those of marble. This is con-
sistent with our earlier observations from three-point 
bending tests (Zhao et al. 2021, 2022).

This difference can be attributed to the mineral structure 
and diagenetic mechanisms of the two rock types. Sand-
stone is a type of sedimentary rock formed mainly by the 
cementation of various sand particles, and the content of 
sand particles is generally greater than 50% (Hu et al. 2019; 
Guo et al. 2021). Sandstone formation is characterized by 
weathering, denudation, transport, and accumulation. Con-
sequently, sandstone generally exhibits poor cementation 

Fig. 9  Distribution diagram of AE amplitude and energy: a UCT-1; b BST-1; c DST-1; d UCT-2; e BST-2; f DST-2

Fig. 10  Calculation results for energy–amplitude ratio (EAR)
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and compactness, as confirmed by density and wave veloc-
ity measurements during the preparation phase of this study. 
Because of this characteristic, the interaction force between 
the rock particles is small, and tensile fractures are more 
likely to occur. Marble is a metamorphic rock formed by 
carbonate rocks through regional or contact metamorphism 
(Scheffler et al. 2016) and generally has a typical granular 
metamorphic structure. Compared with sandstone, marble 
has stronger bonds between crystals, thereby requiring more 
force and releasing more energy when it breaks. Thus, when 
marble breaks, it shows more AE intensity and releases more 
energy.

6.2  Internal causes of rock fracture of different 
types

The crack types in rocks can be divided into tensile and 
shear cracks according to the different causes of formation. 
The essential difference in the formation mechanism lies in 
the relationship between the crack motion and the normal 
directions of the crack surface, driven by a pair of opposite 
and equal force couples acting on both sides of the crack 
surface, as shown in Fig. 11. When a crack exhibits the char-
acteristics of both types of cracks simultaneously, it is char-
acterized as a tensile–shear mixed crack (Du et al. 2020).

This study focuses on the relationship between the macro-
scopic failure mode of the rock and the master crack type. He 
et al. (2018) explained in detail the specific manifestations of 
different crack types in rocks, which can be used to explain 
the results presented in this study. The cracks in the BSTs 
were dominated by tensile stress, and the microcracks in the 
rocks were mainly intergranular tensile fractures. Therefore, 
the rocks exhibited macroscopic characteristics of splitting 
failure dominated by tensile cracks, as shown in Fig. 12a. 
The cracks in the DSTs were dominated by shear stress, and 
the microcracks inside the rocks were mainly transgranular 

dislocation fractures. Therefore, the rocks exhibited shear 
slip failure dominated by shear cracks, as shown in Fig. 12b. 
In the UCTs, shear cracks accounted for more than 70% of 
the rock failures, and the samples developed a main shear 
plane running through them. Although some tensile cracks 
appeared locally because of the low tensile strength of the 
rock, shear cracks dominated the overall failure, as shown 
in Fig. 12c.

Fig. 11  Three types of cracks in 
rock: a Tensile crack; b Shear 
crack; c Tensile–shear mixed 
crack

(a) Tensile crack (b) Shear crack  (c) Tensile - shear mixed crack

(a) BST

(b) DST

(c) UCT

Fig. 12  Macroscopic failure mode of rocks in each type of test: a 
BST; b DST; c UCT 
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7  Conclusions

(1) The load and AE time-history curve in the different 
types of test showed periodic and aggravated characteris-
tics, which could also be seen via the AE b value, S value, 
and peak frequency. The scale and energy of crack activity 
in BSTs were significantly lower than those in DSTs and 
UCTs.

(2) Master cracks in the three test types were identi-
fied using the AF/RA method. The proportion of tensile 
cracks in the BSTs was in the range of 65%–75% (i.e., 
tensile cracks dominated), whereas the proportions of 
shear cracks in the DSTs and UCTs were in the ranges of 
75%–85% and 70%–75%, respectively (i.e., shear cracks 
dominated).

(3) In the process of rock loading and failure under differ-
ent conditions, the number of master cracks always remained 
high, and the number of shear cracks increased with fail-
ure. The medium- and high-energy fracture signals of the 
rocks were distributed densely in the compaction and failure 
stages, and most were concentrated in the middle- and low-
frequency bands.

(4) The AE signals of rock failure dominated by shear 
cracks were characterized by high amplitude, duration, rise 
time, and energy, while those of rock failure dominated by 
tensile cracks were characterized by low amplitude, dura-
tion, rise time, and energy.

(5) The EAR was introduced to reflect the AE energy 
level at the same fracture scale. The calculated results 
indicated that the energy release of shear cracks was larger 
than that of tensile cracks at the same fracture scale. This 
has reference significance for using the EAR to describe 
the energy release characteristics of cracks with different 
formation mechanisms.
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