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Abstract
Desert lakes are important wetland resources in the blown-sand area of western China and play a significant role in maintain-
ing the regional ecological environment. However, large-scale coal mining in recent years has considerably impacted the 
deposition condition of several lakes. Rapid and accurate extraction of lake information based on satellite images is crucial 
for developing protective measures against desertification. However, the spatial resolution of these images often leads to 
mixed pixels near water boundaries, affecting extraction precision. Traditional pixel unmixing methods mainly obtain water 
coverage information in a mixed pixel, making it difficult to accurately describe the spatial distribution. In this paper, the 
cellular automata (CA) model was adopted in order to realize lake information extraction at a sub-pixel level. A mining area 
in Shenmu City, Shaanxi Province, China is selected as the research region, using the image of Sentinel-2 as the data source 
and the high spatial resolution UAV image as the reference. First, water coverage of mixed pixels in the Sentinel-2 image 
was calculated with the dimidiate pixel model and the fully constrained least squares (FCLS) method. Second, the mixed 
pixels were subdivided to form the cellular space at a sub-pixel level and the transition rules are constructed based on the 
water coverage information and spatial correlation. Lastly, the process was implemented using Python and IDL, with the 
ArcGIS and ENVI software being used for validation. The experiments show that the CA model can improve the sub-pixel 
positioning accuracy for lake bodies in mixed pixel image and improve classification accuracy. The FCLS-CA model has a 
higher accuracy and is able to identify most water bodies in the study area, and is therefore suitable for desert lake monitor-
ing in mining areas.
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1  Introduction

The western blown-sand area in China is becoming the 
main coal-producing base. This area has several small 
desert lakes, which not only supply water for plants in 
sandy areas, but also serve as the main water source of sur-
rounding residents and agriculture. Therefore, they play an 
important role in protecting the ecosystem of the blown-
sand area. In recent years, large scale mining activities have 
caused a sharp decline in the number and area of desert 
lakes (Liu et al. 2017; Nie et al. 2018; Wang et al. 2020; Xu 
et al. 2019a, b; Zheng et al. 2021). Reducing the impact of 
coal mining on the fragile ecosystem, especially the desert 

lakes, has become a problem that needs to be solved urgently 
at present. Therefore, obtaining the lake information accu-
rately and rapidly is of great significance for the ecological 
environment protection and sustainable development in the 
mining area.

The development of remote sensing technology offers a 
promising tool for desert lake monitoring as it has outstand-
ing advantages compared with traditional ground observa-
tion methods. The water area, water quality and other param-
eters can be obtained based on the optical remote sensing 
images (Ma et al. 2018; Wang et al. 2019a, b; Zhang et al. 
2021a, b; Zhou and Dong 2019; Zhou et al. 2004). The 
extraction methods mainly include the threshold method, 
classifier method, object-oriented method, data mining 
method, water body index method, etc. (Jiang et al. 2011; 
Li et al. 2020; Liu 2020; Qiao and Sun 2020; Su et al. 2021; 
Wang et al. 2019a, b; Zhang et al. 2021a, b).
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Among these methods, the water body index method is 
the most widely used one. It involves the formulation of a 
mathematical model of the water index through the selection 
of the bands closely related to the water body to enhance 
the contrast between the water body and the background, 
and then realize the rapid extraction of the water informa-
tion (Zhang et al. 2022). Commonly used water body indi-
ces mainly include the normalized difference water index 
(NDWI), the modified NDWI (MNDWI), the automatic 
water extraction index (AWEI), and others. The NDWI is 
based on the spectral characteristics of water and surround-
ing vegetation in the near-infrared and green bands and can 
be used to extract water information from the image. The 
MNDWI uses the mid-infrared band to replace the near-
infrared band to mitigate the influence of buildings when 
extracting water information within urban environments. 
The AWEI integrates the blue, green, near-infrared, short-
wave infrared and mid-infrared band to construct a water 
index and inhibit the influence of shadows and buildings (Xu 
2005; Feyisa et al. 2014).

Due to the limited spatial resolution of the remote sensing 
images, small lake areas and shallow water bodies, there are 
many mixed pixels near the water boundaries in the images, 
which affect the extraction precision.

In order to solve the problem of mixed pixels, research-
ers concentrating on feasible methods for mixed pixels in 
remote sensing images have developed a variety of spectral 
unmixing methods (Chen et al. 2016; Chen and Vierling 
2006; Fan et al. 2009; Li et al. 2008, 2009, 2020; Wu 2004). 
Cui et al. (2019) combined decision tree and linear spectral 
unmixing methods to extract bamboo forest information 
in China. Yang et al. (2010) proposed an image unmixing 
method based on the posterior probability of relevance vec-
tor machines. Zhang et al. (2019) analyzed the factors influ-
encing the decomposition precision of mixed pixels based 
on the constraint linear spectral mixing model. Liu et al. 
(2008) proposed a method for decomposing mixed pixels 
that combined self-organizing map (SOM) neural networks 
and fuzzy membership in the fuzzy theory. Li et al. (2016) 
presented a nonlinear spectral unmixing for optimizing per-
pixel end member sets. Kong and Chen (2017) used the fully 
constrained least squares (FCLS) method to extract different 
reservoir surface water information.

Most of the traditional unmixing methods use spectral 
information to calculate the coverage of water bodies in a 
mixed pixel (Lai et al. 2019; Wang et al. 2008). However, it 
is difficult to describe the water spatial distribution state in 
the mixed pixel due to ignoring the spatial correlation infor-
mation of the ground features, which affects the accuracy of 
lake information extraction.

The cellular automata model (CA) can be used in a sub-
pixel level for the analysis of remote sensing images (Li 
et al. 2015). Feng and Han (2012) used CA to study the spa-
tial distribution of coastlines using remote sensing images. 
Gao and Dai (2020) simulated water pollution dispersion 
based on improved CA model.

This paper selects a mining area in the Shenmu City, 
ShaanXi Province, China, as the research region. It uses the 
Sentinel-2 images as the data source and the high spatial res-
olution UAV images as the reference. The lake information 
extraction at a sub-pixel level is achieved by combining the 
dimidiate pixel model and FCLS with the CA model. This 
method not only considers the image spectral information, 
but also makes full use of the water body spatial correlation. 
Consequently, it can improve the accuracy of remote sensing 
image recognition and classification.

The remainder of the paper is organized as follows. In 
Sect. 2, the natural geographical conditions and the main 
data sets used in this study are described. Study methods are 
described in Sect. 3. The experimental process and accuracy 
analysis are presented in Sect. 4. A summary of the main 
conclusions and prospects of the research detailed in the 
paper is discussed in Sect. 5.

2 � Study area and data processing

2.1 � Overview of the study area

The study area is situated on the southeast edge of Maousu 
Desert at a distance of about 47 km from the Shenmu City, 
Shaanxi Province, China. It is in the arid to semi-arid transi-
tion zone of temperate continental monsoon climate and has 
the characteristics of drought, low rainfall and high annual 
evaporation. The surface is largely covered by quaternary 
blown-sand in the form of semi-fixed and fixed dunes. The 
ground elevation is between 1325.60 and 1234.10 m, with a 
relative maximum height difference of 91.50 m.

The surface water in the study area is mainly comprised 
of small lakes and the water storage volume changes in dif-
ferent seasons. The water depth is associated with geograph-
ical morphology, mostly between 0.3 and 5.0 m. The surface 
vegetation is mainly sandy vegetation. Figure 1 shows the 
desert lakes and surrounding environments.

2.2 � Data acquisition and preprocessing

The remote sensing data for this experiment are based on 
the Sentinel-2 image that was acquired on 5 October 2020. 
It is downloaded from the Copernicus Open Access Hub 
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(https://​scihub.​coper​nicus.​eu/) and the product level is 
L2A, which has been passed through radiation calibration 
and atmospheric correction. The Sentinel-2 images have 13 
bands with different spatial resolutions of 10, 20 and 60 m. 
Table 1 provides detailed information about the bands of 
Sentinel-2 images.

In order to verify the correctness of the proposed method, 
a UAV at a flight altitude of 80 m is used to collect high 
resolution images of the lake. The data qualities of these 
aerial images are first checked, and the images with rela-
tively poor quality are removed. The remaining images are 
imported into the PhotoScan software to carry out image 
matching, aerial triangulation and irregular triangle net-
work model construction, subsequently generating dense 
point clouds and a 3D model to obtain a Digital Orthophoto 
Map (DOM) with a spatial resolution of 0.02 m (Fig. 2), 
then some samples of lakes are obtained with a supervised 
method using the ENVI software as a reference for accuracy 
evaluation (Fig. 3).

Fig. 1   Study area and photos of desert lakes

Table 1   Some bands information of Sentinel-2 image

Band number Band name Central wave-
length (nm)

Spatial resolu-
tion (m)

Band number Band name Central wave-
length (nm)

Spatial reso-
lution (m)

B2 Blue 492.7 10 B7 Red Edge 3 782.8 20
B3 Green 559.8 10 B8 NIR 832.8 10
B4 Red 664.6 10 B11 SWIR 1613.7 20

Fig. 2   DOM of UAV

https://scihub.copernicus.eu/
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3 � Study methods

3.1 � Water coverage index calculation based 
on dimidiate pixel (DP) model

When the desert lake body is extracted using medium spa-
tial resolution remote sensing images, there are many mixed 
pixels that could affect the accuracy near the boundaries 
between the land and water. Therefore, it is necessary to 
un-mix the pixels to estimate the percentage of water, sub-
sequently providing the foundation for water boundary map-
ping at the sub-pixel level (Lai et al. 2019). In this paper, we 
use the dimidiate pixel (DP) model to analyze mixed pixels 
and calculate water area proportion based on the normalized 
difference water index (NDWI).

(1)	 The NDWI was proposed by McFeeter in 1996. It is 
based on the spectral characteristics of water and sur-
rounding vegetation in the near-infrared and green 
bands. The information is used to suppress the vegeta-
tion and enhance the water signal to obtain water infor-
mation in the image. It can be calculated using Eq. (1) 
(Gu et al. 2020; McFeeter 1996; Wang et al. 2017; Xu 
2005):

where G and NIR are the values of green band and 
near-infrared band respectively.

(2)	 Dimidiate pixel (DP) model.
	   Assuming that the reflectance of each pixel is com-

posed of a water part (RW) and a land part (RL), then 
its value can be expressed as a linear weighted sum of 
the two parts, as shown in Eq. (2):

(1)NDWI = (G − NIR)∕(G + NIR)

	   If the water area proportion in a mixed pixel is fw, 
which is the water coverage index of the pixel, then 
the land part is 1–fw. If the pixel is entirely composed 
of water, the reflectance can be represented as Rwater; 
if there is no water in the pixel, the reflectance is Rland. 
Therefore, the information contributed by the water 
part (which is RW) can be expressed as the product of 
the pure water end-member reflectance Rwater and the 
water coverage index fw, while RL can be expressed as 
the product of the land part reflectance Rland and 1 − fw, 
as shown in Eqs. (3) and (4):

	   Then, the water coverage index fw can be calculated 
using Eq. (5) (Ding and Liu 2020).

	   According to the principle of the DP model, the 
NDWI value of a pixel is a composition of the water 
and land parts, so the equation for calculating the water 
coverage index can be expressed as Eq. (6):

where fw is the water coverage index in a mixed pixel, 
and NDWIwater and NDWIland are the NDWI values of 
a pure water pixel and a pure land pixel, respectively.

3.2 � Water coverage index calculation based on fully 
constrained least squares (FCLS) pixel unmixing 
model

The linear spectral unmixing model is a common method to 
solve the problem of mixed pixels in low-resolution remote 
sensing images. In this approach, the spectrum of a mixed 
pixel is considered to be a linear combination of various 
ground object spectra in the instantaneous field of view, as 
expressed using Eq. (7).

where Ri is the reflectance of band i; fj is the percentage 
of ground of class j in the pixel; Re, i, j is the reflectance of 
ground of class j in band i; and εi is the error of band i.

(2)R = R
W
+ R

L

(3)R
W
= f
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∗ R
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(4)R
L
= (1 − f

w
) ∗ R

land

(5)f
w
= (R − R

land
)∕(R

water
− R

land
)

(6)
f
w
= (NDWI − NDWI

land
)∕(NDWI

water
− NDWI

land
)

(7)Ri =

n
∑

j=1

fj ∗ Re,i,j + �i

s.t.

n
∑

j=1

fj = 1, 0 ≤ fj ≤ 1

Fig. 3   Lake samples
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Linear spectral unmixing can be considered as a nonlin-
ear optimization problem with the constraints expressed as 
Eq. (8).

where D(S,XF) is the objective function representing the 
distance between the target mixed pixel reflection spectrum 
S and the estimated spectrum XF (Chang et al. 2003; Kong 
and Chen 2017)

The water coverage index fw can be obtained from Eq. (8) 
using FCLS.

3.3 � Sub‑pixel position based on the Cellular 
Automata model

3.3.1 � Cellular automata

Cellular automata (CA) refer to dynamic systems defined in a 
cellular space composed of cells with discrete and finite states, 
evolving under certain local rules along a discrete time dimen-
sion. These systems follow the bottom-to-top strategy for simu-
lating the change of a complex system. The change of each cell’s 
state at the next generation is determined by its initial state and 
the influence of the neighboring cells around it. Therefore, small 
changes in local cells will eventually cause substantial changes 
in the composition, layout, properties and dynamics of the sys-
tem (Chen et al. 2020; Fisher et al. 2016; Li and Ye 2002; Li and 
Yen 2005; Luo et al. 2005; Yang 2008).

A CA-based system consists of a set of cells, the cellular 
space, neighbors and rules. These can be represented with four 
tuples, as shown in Eq. (9):

where CA is the CA system, Zn denotes the cellular space, 
S is a set of finite discrete cellular states, N represents the 
neighboring cell states, and f is a local state transition func-
tion that uses the current state of the cell and the states of all 
its neighbors to determine the evolution of the state.

As the CA is a computational system that performs com-
plex tasks on the basis of simple items, it is used in the fields 
of geography, society, environment, etc. (Li and Ye 2002; 
Liu et al. 2012; Yuan and Liao 2005; Zhang et al. 2016).

3.3.2 � Lake body optimization in sub‑pixel level based 
on CA model

The original low-resolution pixel is divided into N × N sub-
pixels in order to determine the water distribution in the 

(8)F = minD(S,XF)

s.t.

n
∑

j=1

fj = 1, 0 ≤ fj ≤ 1

(9)CA = (Zn, S,N, f )

mixed pixel. The number of sub-pixels occupied by the 
water body can be determined through the water coverage 
index. Subsequently, the spatial distribution of the water 
body can be estimated based on the CA model. The specific 
methods are introduced as follows:

	 (1)	 Cellular space: The original low-resolution mixed 
pixel and its neighboring pixels are divided into a 
set of sub-pixels that constitute the cellular space. 
In order to improve operational efficiency, the cells 
involved in the transition are limited within the opera-
tion space, which is set to the scope of the original 
mixed pixel. Figure 4 shows the division of cellular 
space.

	 (2)	 Cellular states: The initial state of each cell is deter-
mined according to the water coverage index.

	 (3)	 Neighborhood: The Moore neighborhood is adopted 
in this study.

	 (4)	 Transition rules: First, the CA evolves through the 
influence of the neighboring cells and its current state; 
then, the cellular state is calculatedvia the constraint 
of water proportion in a mixed pixel. Lastly, the layout 
of water body cell is optimized based on the spatial 
association of thecells. The detailed CA evolution is 
as follows:

	 I.	 Cellular state initialization.
		    The initial state values of a pure water pixel, 

pure land pixel and mixed pixel are set to 1, 0, and 
k ∈ (0, 1) according to the water coverage index, 
respectively.

	 II.	 System evolution.
		    ① Evolution based on the influence of neighboring 

cells.
		    The state transition probability of a cell in a mixed 

pixel is calculated using Eq. (10).

Fig. 4   Schematic diagram of cellular space division
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 where St+1(i, j) represents the state of cell (i,j) at 
time t + 1, St(m, n) is the state of the neighboring cell 
(m,n) at time t, and is the weight of the neighboring 
cell (m,n), and (m,n) is used as the identifier of the 
neighborhood.

		    ② Evolution based on the constraints of water cov-
erage in the mixed pixel.

		    After the first-stage evolution, the cellular state val-
ues in the mixed pixel can be differentiated. Subse-
quently, the number of cells that should be converted 
to water bodies can be calculated according to the 
water coverage index and the cellular probabilities 
in descending order. The calculation is as shown in 
Eq. (11):

where Nw is the number of cells whose state values 
are set to 1 in the mixed pixel, Nk is the total number 
of cells in the mixed pixel, and fw is the water cover-
age index of the mixed pixel.

		    ③  Optimization of the spatial location.
		    The cell state can be readjusted to achieve layout 

optimization according to the spatial connectivity in 
a mixed pixel. If an exchange of the states of two 
cells improves the water body pixels’ spatial correla-

(10)St+1(i, j) =
∑

W(m, n) × St(m, n)

(11)Nw = Nk × fw

tion, then the water body’s spatial distribution can be 
optimized.

3.4 � Implementation of the model

The water coverage indices of the dimidiate pixel model 
and FCLS are implemented using the ENVI software 
with IDL (Interactive Data Language) support, and the 
CA model is implemented using the ArcGIS software 
with Python tools. Figure 5 shows the flow chart of the 
implementation.

3.5 � Accuracy evaluation

Accuracy evaluation is an important means to test the reli-
ability of image information extraction method. This is 
generally achieved by comparing the classification results 
with ground measured values. A confusion matrix is often 
established to calculate various classification accuracy 
metrics. In this study, the lake water boundary extracted 
from the UAV image is taken as the ground reference to 
verify the water extraction results obtained using differ-
ent methods. The commonly used accuracy indices are 
commission, omission, producer accuracy, user accuracy, 
overall accuracy and Kappa coefficient. (Pontius Jr and 
Millones 2011; Li et al. 2021; Xu et al. 2019a, b).

Fig. 5   Flow chart of the study
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4 � Experimental analyses

4.1 � Calculation of water coverage index based 
on DP model

The NDWI of the study area was calculated according to 
Eq. (1) and the result is shown in Fig. 6. Water and land 
samples were selected respectively. The maximum value, 
minimum value, mean and standard deviation of the NDWI 
were analyzed (the details are provided in Table 2), and the 
threshold values for water and land were chosen based on 
their respective frequency distribution histograms. Subse-
quently, the distribution of the water coverage index was 
calculated using Eq. (6) and the result is shown in Fig. 7.

4.2 � Calculation of water coverage index using FCLS 
pixel unmixing model

Depending on the land characteristics of the study area, 
the land cover was classified into three types, namely 

vegetation, water and soil land. Then, the pure end ele-
ments were selected to calculate the coverage index of 
the land type using the FCLS tool provided by ENVI. The 
results are shown in Fig. 8.

Fig. 6   NDWI Value

Table 2   Sample information statistics of NDWI

Type Min Max Mean Std. Dev

Water  − 0.0197 0.7241 0.4143 0.1234
Land  − 0.6066  − 0.1866  − 0.3558 0.0625

Fig. 7   Distribution of water coverage index

Fig. 8   Coverage index distribution for different land types
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4.3 � CA simulation

4.3.1 � CA Model Construction

In order to facilitate the division of the cellular spaces and 
reduce the error of data processing, the size of the CA is 
recommended to be an integer division of the resolution for 
segmentation. So, the water coverage index image of 10 m 
spatial resolution was subdivided into 2 m spatial resolu-
tion in ArcGIS for CA generation using the nearest neighbor 
method, which does not change the values of the cells.

The neighborhood was set to 3 × 3 and the weight of the 
neighborhood cells was assigned based on the distance to the 
central cell according to the following rules.

The weight value of central cell shall be the largest 
because it will contribute the most information in next gen-
eration the during CA evolution. The weight value of cells 
that adjoin the central cell with a edge shall be moderate, 
while for cells that adjoins the central cell with a point, the 
weight value shall be the lowest. The sum of all weight val-
ues of neighborhood shall be equal to one.

4.3.2 � CA simulation

Based on the transition rule given by Eq. (10), the intermedi-
ate results after CA evolution are shown in Fig. 9. It can be 
observed that the cellular state values of the mixed images 
are strongly correlated with the spatial layout of the water 
body, and the spatial shape is finer than before CA evolution.

Allocation for the cellular state of the lake body was 
based on water coverage constraints in a mixed pixel. The 
number of cellular states of the lake body was determined 
according to the water coverage in the mixed images, and the 
value of cellular state was changed to water according to the 
probabilities sorted in descending order after cell evolution.

Although the proportion of water cells in the mixed pixel 
can be determined after the previous step, there are a few 
opening holes or discontinuities in the partial layout of a 
water body. Therefore, the spatial distribution of water cells 

was adjusted based on the spatial correlation. The corre-
sponding results are shown in Fig. 10. It can be observed 
that the spatial connectivity of water body is improved and 
the distribution is more logical after CA evolution.

4.4 � Accuracy analysis

13 samples about of the lake body were obtained from the 
UAV image. Next, the extraction results of the lake body 
using the NDWI, DP-CA, FCLS and FCLS-CA methods 
were compared with the reference value in Fig. 11. The con-
fusion matrix was calculated by comparing the location and 
class of each truth pixel with the corresponding location and 
class in the classification image, respectively.

Subsequently, the commission, omission, producer accu-
racy, user accuracy, overall accuracy and Kappa coefficient 

Fig.9   Local details about the mixed pixel

Fig. 10   Spatial optimization for the water cell

Fig. 11   Comparative analysis of the extracted results
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indices were calculated to evaluate the accuracy of different 
methods. Further details are given in Table 3.

The results show that the FCLS-CA model can identify 
most water bodies in the study area, and its overall accuracy 
and Kappa coefficient were higher than those of other meth-
ods. This method also achieved a better balance between the 
indices of commission and omission percentage.

There were some small lakes that could not be identi-
fied due to the limited spatial and spectral resolutions of the 
original remote sensing image.

5 � Conclusions

Desert lakes are important wetland resources and hold great 
significance for maintaining the regional ecological environ-
ment. Information extraction relevant to the lakes via remote 
sensing images is affected by many mixed pixels present in 
the images. This paper presented a new method to obtain the 
position and size of water from a mixed pixel in a remote 
sensing image. Through the use of CA, the distribution of 
water body can be obtained automatically and the impact of 
inappropriate threshold value selection, which is a common 
occurrence in water body index methods, are reduced. The 
experiments show that the CA model can improve the sub-
pixel positioning accuracy for lake bodies in mixed pixel 
image and improve classification accuracy. Compared with 
other methods, the FCLS-CA model has a higher accuracy 
and can identify most water bodies in the study area.

There were some small lakes that could not be accurately 
identified, so the method still needs further improvement in 
the future to increase the information extraction accuracy 
with higher spatial and spectral resolution remote sensing 
images.
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