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Abstract Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex

contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile

loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D

geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/

ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as

compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent

stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire

layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first

twisting manner of wires.
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1 Introduction

At the present time, spiral ropes are widely used in light-

weight cable-supported structural systems such as sports

stadia, suspended bridges and large Ferris wheels. A rope

can be a critical load carrier of these structures (Beltrán and

Williamson 2011; Stanova et al. 2011a).

With the increase of demand in predicting the behavior

of ropes, many advanced digital techniques had been used

in the strand and rope analysis. Computer-aided design and

the finite element method created powerful sophisticated

tools for the modeling and analysis of ropes. Judge et al.

(2012) developed full 3D elastic–plastic finite element

models of the multi-layer spiral strand cables subjected to

quasi-static axial loading using LS-DYNA. Nawrocki and

Labrosse (2000) presented a finite element model of a

simple straight wire rope strand and studied all the possible

inter-wire motions. The role of contact conditions in pure

axial loading and axial loading combined with bending

were investigated. Stanova et al. (2011b) established a

geometric model of a multi-layered strand by CATIA V5

and analyzed force-strain relationship of the strand by

ABAQUS/Explicit. Jiang et al. (2000, 2008), Jiang (2012)

performed concise finite element models for 1 9 7 wire

strand under axial extension and pure bending load, and

studied the contact stress among wires, wire radial dis-

placement, global response of the strand and predicted the

detailed progressive nonlinear plastic behaviors of the

strand wires. Ma et al. (2008, 2009) reported the 6 9 19

IWS right lang lay and right ordinary lay rope models with

ANSYS software. Wang et al. (2012, 2013) proposed finite

element models for 6 9 19 wire rope from the viewpoint

of determination of fretting parameters. Many scholars

(Bradon et al. 2007; Ghoreishi et al. 2007a, b; Usabiaga

and Pagalday 2008; Argatov 2011; Beltrán and Williamson

2011; Paczelt and Belezna 2011; Beltra’n and Vargas

2012; Prawoto and Mazlan 2012) dealt with theoretical

models, fiber ropes and broken ropes using 3D finite ele-

ment analyses.
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However, few models with different twisting manners of

open spiral ropes had been reported.

In this study, three geometric models of open spiral wire

rope 1 9 37 with different twisting manners of wires were

built by CAD software Pro/ENGINEER. The models were

imported into the ANSYS/Workbench. Behavior of the

models obtained from finite element analysis was com-

pared with theoretical and experimental data. The effect of

twisting manner on open spiral rope was analyzed.

2 Geometric models generation

2.1 The parameters of models

The cross-section of an open spiral rope 1 9 37 with a

structure of wires 1 ? 6 ? 12 ? 18 in the three wire

layers is shown in Fig. 1.

In wire ropes (Feyrer 2007), spiral ropes were round

strands as they had an assembly of layers of wires laid

helically over a center with at least one layer of wires being

laid in the opposite direction to that of the outer layer. To

predict the effect of twisting manner on open spiral rope

1 9 37 under tensile loads, three cables with different

twisting manners and equal diameters of wires are mod-

eled. The parameters of the three investigated ropes (Feyrer

2007) are shown in Table 1. The lay radius of wires in the

individual layers of the strand is

r1 ¼ d0 þ d1

2
¼ 1:35 þ 1:25

2
¼ 1.3 mm

r2 ¼ r1 þ
d1 þ d2

2
¼ 1.3 þ 1:25 þ 1:25

2
¼ 2.55 mm

r3 ¼ r2 þ
d2 þ d3

2
¼ 2.55 þ 1:25 þ 1:25

2
¼ 3.8 mm

2.2 CAD modeling

The parameter of the helical curve of the wire centerline in

a straight spiral rope as fellows (Feyrer 2007):

x ¼ �r � sin /

y ¼ r � cos /

z ¼ r

tan a
� /

hw ¼ 2p � r

tan aj j

ð1Þ

where / is the angle of rotation (the direction of rotation in

anti-clockwise is positive, the clockwise is negative), hw is

lay length, a is the angle of lay and r ¼ ri ði ¼ 0, 1, 2, 3)

(see Fig. 2).

The lay length of first layer is

Fig. 1 The structure of an open spiral rope 1 9 37

Table 1 The parameters of models

Model Layer No. of

wires

Diameters

of the wires

(mm)

Lay

angle a
(�)

Lay

radius

(mm)

Model 1 Center wire 1 1.35 0 0

1 6 1.25 14 1.3

2 12 1.25 14 2.55

3 18 1.25 14 3.8

Model 2 Center wire 1 1.35 0 0

1 6 1.25 14 1.3

2 12 1.25 14 2.55

3 18 1.25 14 3.8

Model 3 Center wire 1 1.35 0 0

1 6 1.25 14 1.3

2 12 1.25 14 2.55

3 18 1.25 14 3.8

Fig. 2 Wire space curve in a straight spiral rope
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hw1 ¼ 2pr1

tan a1

¼ 2 � 3:14 � 1:33

tan 14
¼ 32:74 mm

The lay length of second layer is

hw2 ¼ 2pr2

tan a2

¼ 2 � 3:14 � 2:55

tan 14
¼ 64:23 mm

The lay length of third layer is

hw3 ¼ 2pr3

tan a3

¼ 2 � 3:14 � 3:8

tan 14
¼ 96:42 mm

The helical curve of the wire centerline of rope can be

represented by cylindrical coordinates in PRO/ENGI-

NEER. The spiral curve in cylindrical coordinates is

written as

R ¼ r

theta ¼ 360 � n � t

z ¼ t � h

ð2Þ

where r is the radius of helix, n is the number of helix, the

valve of t between 0 and 1, and h the pitch of helix.

By Eq. (2), turn Eq. (1) into Eq. (3) as the following:

x ¼ r � cosð360 � n � t)

y ¼ r � sinð360 � n � tÞ
z ¼ t � h

ð3Þ

The defined geometric parametric equations are used to

generate the spatial curves of the wires centerline in the

individual layers of the rope (see Table 2).

In Pro/ENGINEER, the helical curve of the wire cen-

terline in first layer of model 1 is constructed according to

equations (see Table 2). The wire is generated by the

sweep function and arrayed the wire in accordance with the

number of wires in first layer. Consequently, the generation

of six wires in first layer is finished. The mentioned

approach is repeated for the other wires in all layers of the

rope. Topology of the generated wires in the second, third

layer and core wire. It should be noted that wires of all

layers are modeled as the same way whereas the adequate

parametric equations with the corresponding values of the

wire diameter and the lay radius for the actual layer must

be used.

The other two models are created analogously. Three

models of spiral ropes are shown in Fig. 3. It can be seen

from Fig. 3a that the twisting manner of wires in the first

layer of the first model is clockwise, that of the second layer

is anti-clockwise and that of the third layer is clockwise. The

twisting manner in the first layer of second model is clock-

wise, that of the second layer and third layer is anti-clockwise

(see Fig. 3b). The twisting manner in the first layer of third

model is anti-clockwise, that of the second layer is anti-

clockwise and third layer is clockwise (see Fig. 3c).

3 The generation of 3D FE models

The geometric models of spiral ropes created in PRO/

ENGINEER are imported into the finite element software

of ANSYS/Workbench, which are used for finite element

numerical analysis. These CAD models are exported as XT

files to ANSYS/Workbench software.

3.1 Material properties and contacts

The assumed modulus of elasticity of the wire material is

E = 188 GPa, the density is q = 7,800 kg/m3, the Pois-

son’s ratio is v = 0.3 (Beltrán and Williamson 2011).

The frictional contact types are defined between the sur-

faces of the individual adjacent wires of ropes. The coefficient

Table 2 The equations of helical curve

Model Layer i Equations of helical curve

Model 1 1 x ¼ 1:3 sin 96:42
32:74

� t � 360
� �

y ¼ 1:3 cos 96:42
32:74

� t � 360
� �

z ¼ 1:3t � p � 2 � 96:42
32:74

tan14

2 x ¼ �2:55sin 96:42

32.74
� t � 360

� �

y ¼ 2:55 sin 96:42
32:74

� t � 360
� �

z ¼ 2:55t � p � 2 � 96:42
32:74

tan14

3 x ¼ 3:82 sinðt � 360)

y ¼ 3:82 cosðt � 360)

z ¼ 3:82t � p � 2

tan14

Model 2 1 x ¼ 1:3 sin 96:42
32:74

� t � 360
� �

y ¼ 1:3 cos 96:42
32:74

� t � 360
� �

z ¼ 1:3t � p � 2 � 96:42
32:74

tan14

2 x ¼ �2:55 sin 96:42
32:74

� t � 360
� �

y ¼ 2:55 sin 96:42
32:74

� t � 360
� �

z ¼
2:55t � p � 2 � 96:42

32:74

tan 14

3 x ¼ �3:82 sinðt � 360)

y ¼ 3:82 cosðt � 360)

z ¼ 3:82t � p � 2

tan 14

Model 3 1 x ¼ �1:3 sin 96:42
32:74

� t � 360
� �

y ¼ 1:3 cos 96:42
32:74

� t � 360
� �

z ¼
1:3t � p � 2 � 96:42

32:74

tan 14

2 x ¼ �2:55 sin 96:42
32:74

� t � 360
� �

y ¼ 2:55 sin 96:42
32:74

� t � 360
� �

z ¼
2:55t � p � 2 � 96:42

32:74

tan 14

3 x ¼ 3:82 sinðt � 360)

y ¼ 3:82 cosðt � 360)

z ¼ 3:82t � p � 2

tan 14
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of friction between wires is l ¼ 0.2. The pairs of contact are

329. The formulation of contact is Augmented Lagrange.

3.2 Finite element mesh generation

The mesh method is sweep method. The size of element in

sweep method is 0.5 mm. Face meshes with dimensions of

0.3 mm are used for the finite element analysis. The sizing of

relevance center is fine. The skewness of mesh size is 0.56.

The meshes for each wire are generated independently. Three

models are composed of 195,395 elements and 941,117 nodes.

3.3 Supports

The supports of one end in the models are fixed support

(fully fixed in all degrees of freedom) and the supports of

Fig. 3 The three models of spiral ropes

Fig. 4 The normal stress along Z axis of model 1: a core wire, b the

first layer, c the second layer and d the third layer
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other end in the models are submitted to a force. Four

different loading forces: F1 = 13,680 N, F2 = 20,000 N,

F3 = 25,000 N and F4 = 30,000 N are considered for

each model.

4 Results and discussion

4.1 Comparison of normal stresses with theoretical

and experimental data

For previous literature (Feyrer 2007; Beltrán and Williamson

2011; Stanova et al. 2011a, b) reported the twisting manner of

rope as those of first model, the first model is compared with

theoretical and experimental data. The normal stresses of four

wires at the X positive direction (see Fig. 3a) are studied. The

normal stresses along Z axis of model 1 are presented in Fig. 4

and Table 3. The normal stress nephogram along Z axis of

model 1 and model 2 at tensile force (F1 = 13,680 N) are

presented in Fig. 5. For the rope has equal magnitude of lay

angle for all wire layers, the tensile stress of four wires in the

three layers are nearly the same. The center wire of the rope

has a higher stress than the other wires.

Numerical stress values of model 1 obtained by the

present finite element analysis are compared with those of

the analytical approach proposed by Feyrer (2007). The

tensile stress rtk in a wire of a specific wire layer k is

rtk ¼
cos2 ak

1þtk �sin2 ak
� Ek

Pn
i¼0 ð zi�cos3 ai

1þti�sin2 ai
� Ei � AiÞ

� S ð4Þ

where Ei and/or Ek is the modulus of elasticity of the wire,

Ai is the cross-sectional area of the wire, ti and/or tk is the

Poisson’s ratio, ai and/or ak is the lay angle, n is the number

of wire layers counted from the inside with n = 0 to the

core wire and zi is the number of wires in the wire layer, S

is the tensile force. Stresses of the wires for the rope cal-

culated according to Feyer’s method (Feyrer 2007) and

Eq. (4) are used in the calculating process. The obtained

results are presented in Table 4.

The relative differences er are calculated according to

the following equation.

er ¼ rFEM � rTD

rTD
100 % ð5Þ

rFEM is the stress obtained by the finite element analysis.

rTD is the stress according to the theoretical data. The

relative differences are shown in Table 5. When a straight

spiral rope becomes longer and thinner under a tensile

Fig. 5 The normal stress nephogram along Z axis of model 1 and

model 2

Table 3 Average normal stresses of model 1 along the Z axis

obtained from Fig. 4

Stresses (MPa)

Force (N) Core wire Wire in

first layer

Wire in

second layer

Wire in

third layer

13,680 303.43 282.1 289.4 287.3

20,000 489.02 454.65 425.13 447.47

25,000 554.39 515.42 512.2 524.3

30,000 665.27 618.5 612.3 609
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force, the wire helix will be deformed. Beside the tensile

stresses, there exist bending stresses, torsion stresses and

radial pressures from the small length-related radial force

of the wires. Additionally, the wire stresses in the straight

spiral rope neglected in Eq. (4), the numerical stress values

of the model obtained by the present finite element analysis

are slightly higher than those of theoretical data.

The results show that the strain discrepancies do not

exceed 9 %. The mesh quality determines calculation

accuracy. If mesh is refined, the relative differences will be

smaller at cost of computational time.

The force-strain relationship of the studied rope obtained

by the present finite element analysis is compared with those

obtained experimentally and theoretically by Nakai et al.

(1975). The compared results are shown in Fig. 6.

The relative differences ee are calculated according to

the testing results (Nakai et al. 1975).

ee ¼
eFEM � eTEST

eTEST
� 100 % ð6Þ

where eFEM is the strain obtained by the finite element

analysis. eTEST is the strain according to the testing results.

The results show that the strain discrepancies do not

exceed 4.74 %.

The present FE model is in an acceptable level of

accuracy as compared with theoretical and experimental

data. The model is validated.

4.2 Comparison the force-strain relationship of three

models

The resultant elongations of three models are shown in

Fig. 7. The resultant elongations of model 2 are larger than

those of model 1 and model 3.

Fig. 6 Comparison of the force-strain relationship of the ropes

obtained by the present finite element analysis with those obtained

experimentally and theoretically by Nakai et al. (1975)

Table 4 The calculated stresses of rope

Force (N) Core wire (MPa) Layer wires (MPa)

13,680 333 308

20,000 486.74 450.34

25,000 608.42 562.9

30,000 730.1 675.5

Table 5 Relative differences er

Force (N) Core wire (%) Wire of first layer (%) Wire of second layer (%) Wire of third layer (%)

13,680 -8.87987988 -8.409090909 -6.038961039 -6.720779221

20,000 0.468422566 0.95705467 -5.597992628 -0.637296265

25,000 -8.880378686 -8.434890744 -8.006928406 -6.857345887

30,000 -8.879605533 -8.43819393 -8.356032568 -8.844559585

Fig. 7 Resultant elongations of three models

Fig. 8 Force-strain relations of three models
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The resultant strain is expressed as

e ¼ DL

L0

ð7Þ
where DL is the resultant elongations of the model.

The force-strain relations of three models are compared,

shown in Fig. 8. The force-strain relationship of model 1 is

Fig. 9 The equivalent stress of two models at different tensile forces: a core wire, b first layer, c second layer and d third layer
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similar with that of model 3. The first twisting manner of

model 1 is contrary to the twisting manner of model 3 and

the other twisting manner of two models are identical. The

third twisting manner of model 2 is contrary to the twisting

manner of model 1 and the other twisting manner of two

models are the same. For the resultant elongations and the

strain of model 2 are higher than that of other models, it

indicates that the relation of twisting manner between first

layer and second layer has little influence on strain and

stress and those between second layer and third layer has

influence on the response of the rope under tension.

4.3 Comparison of the equivalent stresses for different

models

For the resultant elongations and the strain of model 1 are

similar with those of model 3, only the equivalent stresses

of the four wires in model 1 and model 2 at the X positive

direction (see Fig. 3a, b) along Z direction are studied.

The equivalent stresses of layers in two models at tensile

forces: F1 = 13,680 N, F2 = 20,000 N, F3 = 25,000 N

and F4 = 30,000 N are shown in Fig. 9 and Table 6.

The equivalent stress nephogram of two models at ten-

sile force (F1 = 13,680 N) are shown in Fig. 10, and the

contacting stress distribution nephogram between inner and

outer wire layers of two models are shown in Fig. 11.

The equivalent stress of the first layer in model 2 is

larger than the yield stress 1,580 MPa (Beltrán and Wil-

liamson 2011) from F2 = 20,000 N to F4 = 30,000 N.

Plastic deformation happens on the wires of first layer.

Though the twisting manner of model 2 are satisfied with

that spiral ropes were round strands as they had an

assembly of layers of wires laid helically over a center with

at least one layer of wires being laid in the opposite

direction to that of the outer layer (Feyrer 2007), it can be

seen that the equivalent stresses of layers in model 2 are

higher than that of model 1 which further confirms the

second and third twisting manner have effect on ropes.

The structures of model 2 are different from model 1 in

twisting manner of outer and the strain and stresses of

model 2 are higher than model 1. The structures of model 3

are different from model 1 in twisting manner of first layer

and these two models are similar in strain and stresses.

Contrasting the structures of three models, it means that the

second twisting manner of open spiral rope 1 9 37 should

be contrary to that of the outer layer. In processing of

manufacture the twisting manner similar to twisting man-

ner of model 2 do not choose.

Table 6 Average equivalent stresses obtained from Fig. 9

Model Force

(N)

Core

wire

Wire of

first layer

(MPa)

Wire of

second

layer (MPa)

Wire of

third layer

(MPa)

Model

1

13,680 372.59 322.01 460.35 244.14

20,000 600.48 518.99 641.93 393.47

25,000 680.74 588.36 701.09 446.06

30,000 816.89 706.03 809.31 535

Model

2

13,680 533.16 891 379.69 419.41

20,000 859.27 1,437.55 611.93 675.95

25,000 974.13 1,629.7 693.74 766.29

30,000 1,168.95 1,955.64 832.47 919.5
Fig. 10 The equivalent stress nephogram of two models
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5 Conclusions

In order to simulate the complex geometry of open spiral

ropes by finite element analysis, the geometric parametric

equations were established and implemented in PRO/

ENGINEER software for the geometric models. The

methodology of their implementation and the approach for

creation of the geometric model for the open spiral ropes

were demonstrated. Three models had been established in

order to predict the behaviors of the models under different

tensile loads by ANSYS/Workbench.

The finite element models of spiral ropes with compli-

cated geometry and contact conditions had been developed

in this study. The normal stresses and force-strain rela-

tionship of the studied ropes obtained by the present finite

element analysis were compared with those obtained the-

oretically and experimentally. The present FE model was

proved to be accurate sufficiently as compared with

theoretical and experimental result, which can be utilized

to optimize key geometric parameter-twisting manner.

Further development is ongoing to analyze the equiva-

lent stresses which was induced by the twisting manner of

cables. The twisting manner in each layer was important to

ropes and the twisting manner of open spiral ropes with

three layers should not choose the twisting manner of

model 2. The outer twisting manner should be contrary to

that of the second layer, no matter what is the first twisting

manner of wires.
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