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Abstract Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The

theory of froth flotation is complex and is not completely understood. This fact has been brought many monitoring

challenges in a coal processing plant. To solve those challenges, it is important to understand the effect of different

parameters on the fine particle separation, and control flotation performance for a particular system. This study is going to

indicate the effect of various parameters (particle characteristics and hydrodynamic conditions) on coal flotation responses

(flotation rate constant and recovery) by different modeling techniques. A comprehensive coal flotation database was

prepared for the statistical and soft computing methods. Statistical factors were used for variable selections. Results were in

a good agreement with recent theoretical flotation investigations. Computational models accurately can estimate flotation

rate constant and coal recovery (correlation coefficient 0.85, and 0.99, respectively). According to the results, it can be

concluded that the soft computing models can overcome the complexity of process and be used as an expert system to

control, and optimize parameters of coal flotation process.
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1 Introduction

Global consumption of primary energy continues to grow.

Especially coal demand has increased from 2013 hence

China has started to import the heating coal. Coal is

domestically the largest source of energy in America, and

demands to generate electricity and to produce high grade

coking coal have made the process of fine coal (-500 lm)

reasonable. These facts have emphasized on the

development of technologies that can produce clean fine

coal particles to reduce their environmental problems (Sun

and Zimmerman 1950). To treat fine coal particles, the

well-established technique is froth flotation. Flotation is a

physicochemical separation method which is undoubtedly

the most important and versatile mineral processing tech-

nique for the beneficiation of fine valuable particles (Wills

2006; Jena et al. 2008; Abkhoshk et al. 2010).

Coal flotation is the most efficient method to improve

the quality of fine particles by reducing impurity contents

(ash, mineral matter and sulfur resources) (Tao et al. 2002;

Gupta et al. 2009; Barraza et al. 2013; Gui et al. 2014).

Separation by flotation is a complex three-phase process

(liquid, solid and air phases) with many sub-processes and

interactions. Flotation of coal samples is controlled by

many factors that divided into three parts: coal, chemistry

and machine (Wills 2006; Huynh et al. 2011; Liang et al.

2015; Peng et al. 2015).

Generally, flotation is based on differences of the coal

and impurities surface chemical characteristics. Coal is a
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heterogeneous material which composed of a variety of

organic (different organic components (macerals) of coal

may respond differently to flotation) and inorganic con-

stituents (Lynch et al. 1981; Hower et al. 1984; Arnold and

Aplan 1989; Hower et al. 2000). Therefore, surface prop-

erties and flotation response of coal samples are significantly

varied, and it is important to understand how different fac-

tors affect and how to control coal flotation performance for

a particular system (Huynh et al. 2011). It is well established

that conducting a model for the process would be beneficial

to fully understand mechanisms of various units (Woodbum

et al. 1976; King 1978; Woodbum and Wallin 1984; Mathe

et al. 2000; Abkhoshk et al. 2010). Main benefits of these

models could be: the control and improvement of the

flotation process. Development of an applicable flotation

model also could lead to the generation of a simulator that

can be used to optimize the process, train plant operators and

engineers, help to the better understanding of the complex

three-phase phenomenon, and scale up of laboratory test

results (Sherrell 2004; Do 2010).

To provide an accurate flotation model, the effect of

hydrodynamic parameters on the flotation response of

coarse and fine minerals has been widely investigated and a

few studies have modeled recovery in empirical ways

(Shahbazi and Rezai 2009; Shahbazi et al. 2012; Shahbazi

et al. 2013a, b). The main limitation of those models is

their applicability over widely varying feed characteristics

(Rra et al. 1989). Also several fundamental flotation

models which have taken many parameters into account

were designed, but these models did not widely apply in

industrial flotation studies (due to their complexity and the

variety of immeasurable parameters) (Amini 2012). The

complication of flotation mechanism and interdependence

of micro processes have been made evaluation and gener-

ation of quantitative and predictive model significantly

difficult (Sherrell 2004; Do 2010; Amini 2012; Golshani

et al. 2013; Karimi et al. 2014).

Recent reviews on modeling methods reported that the

number of soft computing based engineering models is

increasing (Dote and Ovaska 2001). Soft computing is a

collection of methodologies including fuzzy system, neural

networks, and genetic algorithm which developed to

eliminate imprecision and uncertainty of a nonlinear

complex system (Kayak and Zadeh 1998). One of the

popular soft computing methods is the neuro-fuzzy tech-

nique that is a hybrid combination of artificial neural net-

works (ANN) and fuzzy inference system (FIS). Adaptive

neuro-fuzzy inference system (ANFIS) is an example of a

neuro-fuzzy technique. ANFIS introduces a neural network

(NN) approach in fuzzy inference system design (Jang

1993; Jang and Sun 1995; Jang et al. 1997). ANFIS has

been applied in many aspects of mineral processing to

model complex relationships (For flotation, ANFIS is

applied to the prediction of collision probability, recovery,

gas holdup, diameter, and surface area flux of bubbles)

(Jorjani et al. 2008, 2009; Chelgani et al. 2010, 2011a, b;

Chelgani and Makaremi 2013; Shahbazi et al. 2013a, b).

In this study, to better understand the association of

various parameters during coal flotation, the effect of par-

ticle characteristics and hydrodynamic conditions was

investigated for a wide size fraction of coal particles. Sta-

tistical analyses have been used to explore inter-correlation

and relationship among flotation parameters and responses

to select the most effective variables for the modeling. This

investigation also is going to present an accurate method for

the prediction of flotation responses (recovery and flotation

rate constant) based on the selected hydrodynamic parame-

ters and particle properties by using ANFIS models. To our

knowledge, this is the first time that ANFIS has been used to

predict coal flotation responses using an inclusive database

of the mentioned input variables.

2 Materials and methods

2.1 Froth flotation

An applicable computing model requires a comprehensive

database to cover a wide variety of conditions. The model

should be capable for predicting outputs with a high

validity. Evaluation of effective variables in the process

usually is accomplished by fitting batch data to first-order

kinetic rate equations (Loveday and Raghubir 1995; Runge

et al. 1997; Harris 1998; Agar et al. 1998). In this study, the

data was produced by flotation tests that conducted in a

mechanical laboratory cell (the length: 0.13 and height

0.12 m, 1.5 l). An impeller with 0.07 m diameter was used

for the pulp agitation. The impeller’s rotational speed were

900, 1000, 1100, and 1200 rpm, and the air flow rate were

varied from 120 to 180 l/h. Coal samples were prepared

from Abnil mine in Kerman, southeast of Iran (Table 1).

Samples were classified to eight size classes: -37,

-53 ? 37, -75 ? 53, -106 ? 75, -212 ? 106,

-300 ? 212, -420 ? 300 and -500 ? 420 lm and were

used for flotation experiments. 22.4 ppm MIBC (methyl

iso-butyl carbinol) as a frother was added to the mixture.

The batch wise flotation of coal particles can be

described by the following first order rate equation in

which the removal rate of particles is given by:

dCt

dt
¼ �kCt ð1Þ

R ¼ R�ð1� exp�ktÞ ð2Þ

where, Ct is the concentration of particle (mass per unit

volume), R* is the infinite recovery (Do 2010; Shahbazi

et al. 2013a, b; Soni 2013; Karimi et al. 2014), and k is a
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‘‘rate constant’’. Value k can be calculated by plotting the

first order rate equation for a batch cell [Eq. (2)] versus t.

Flotation rate constant (k) is strongly related to the Sb
(bubble surface area flux) (Gorain et al. 1997, 1998):

k ¼ aRfSb ð3Þ

Sb ¼ 6
Jg

d32
ð4Þ

where d32 is the sauter mean diameter of the bubble, a is

the ‘‘floatability factor’’, Jg is the superficial gas velocity

and Rf is the froth recovery factor. Rf is defined as the ratio

of the overall flotation rate constant and the collection zone

rate constant (Gorain et al. 1998; Hernandez-Aguilar et al.

2005). The a factor is affected by particle characteristics

and hydrodynamic conditions during flotation (Shahbazi

et al. 2012; Shahbazi et al. 2014).

Energy dissipation (ἐ ) and bubble Reynolds number

(Reb) are effective hydrodynamic parameters on the k value

(Nguyen 1998; Hu et al. 2003). The mean dissipation (e) in
a stirrer can be calculated based on the following equation

(Nguyen 1998)

e ¼ P

m
ð5Þ

where P is power input, and m is liquid mass. The energy

flux equals to the dissipation. In other words, the power per

unit mass of fluid is withdrawn from the basic flow and

transformed into heat by the deceleration of the smallest

vortices (Ralston et al. 1999). The particle Reynolds

number is given by (Neethling and Cilliers 2003)

Rep ¼
dpus

m
ð6Þ

where us is the rate of sliding motion for particles that is

obtained by the particle settling rate. When Rep\ 1, a

boundary layer with laminar flow is formed between the

particle and fluid. When Rep[ 1, the flow condition

becomes more turbulent. When Rep[ 10, the boundary

layer breaks off. The flow lines near the coarse particle will

curl up to form definite vortices. In the flotation tests,

bubble Reynolds numbers ‘‘Reb’’ were varied from 130 to

307.

Turbulence plays a decisive part in the flotation process

(it is responsible for collisions between particles and bub-

bles), and in the formation of aggregates (for the stability

of the aggregates in the greater part of the machine vol-

ume) (Schubert 1977). The intensity and the structure of

the micro turbulence depend only on the magnitude of

energy flux and the viscosity of the fluid. The energy flux is

equal to the dissipation. In other words, the power per unit

mass of fluid is withdrawn from the basic flow, and

transforms into heat by the deceleration of the smallest

vortices (Ralston et al. 1999). The micro scale turbulence

(k0) is calculated by the following equation (Schulze

1984a, b):

k0 ¼
m3

e

� �1=4

ð7Þ

where m is kinematic viscosity. To calculate bubble surface

area flux (Sb) (based on Eq. (4)), the bubble size (db) dis-

tribution was measured in a device similar to the McGill’s

bubble viewer (Girgin et al. 2006). It consisted of a sam-

pling tube attached to a viewing chamber with a window

inclined at 15o from vertical. The closed assembly was

filled with water of a similar composition to the flotation

cell (to limit errors in the bubble environment during the

sampling). Then the tube was immersed in the desired

location under the froth. Bubbles rose into the viewing

chamber and were imaged by a digital camera. They slid up

the inclined window which was illuminated from the

behind. For this measurement, at first frother was added to

the water and then the viewing chamber was filled with

water of the cell to prevent bubble coalescence. Deviation

between micro scale turbulence size and particle size

(k0 - dp) is effective on flotation response. Also, superfi-

cial gas velocity (Jg) was calculated using the air flow rate

and the area cross section of the cell with consideration of

the area occupied by the impeller shaft. The input power

was inferred from the electrical measurements; measuring

the entrance amperage and voltage to the electrical motor

of the flotation equipment. To calculate the net power

consumption, at first power consumption of the equipment

was measured by wattmeter (in absent of pulp), then

flotation cell was filled by pulp, and power consumption

was measured again. Net power consumption was calcu-

lated by subtraction of these two measured powers.

When the Sb value was constant, various size fractions

were floated together in the same condition. In all experi-

ments, the froth depth was shallow and the froth recovery

factor (Rf) was assumed to be 1. The air flow rate and the

impeller speed were set and the float product was collected

at interval times of: 1, 2, 3 and 5 min. The recovery, R, was

determined as a function of time (R*calculated via the

Table 1 Proximate analysis of the Abnil coal sample (Air dried, %)

Calorific value (kcal/kg) Ash H C S N Moisture Volatile mater

6500–7000 19.32 3.4 75.4 1 1.7 1.05 15.1
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relative weight concentrate to feed ‘‘yield’’), and the k was

calculated according to Eq. (2). Flotation results based on

different conditions are presented in the database (supple-

mentary database).

2.2 Soft computing

Fuzzy systems and neural networks are popular techniques

(in recent decade, interest to these methods has been sig-

nificantly increased. Both methodologies belong to the soft

computing area and have simulated to be used for the

human tolerance in completeness, uncertainty, imprecision

and fuzziness in the decision making processes. Neural

network and fuzzy logic are model-free estimators and

share the common ability to deal with the uncertainties and

noise (Yager and Zadeh 1994). Both of them encode the

information in parallel and distribute architectures in a

numerical framework. Hence, it is possible to convert

fuzzy logic architecture to a neural network and vice versa.

This fact makes it possible to combine the advantages of

neural network and fuzzy logic. The ANFIS combines

these two approaches (neural networks and fuzzy systems).

Combining these two intelligent approaches lead to the

increase in quality of modeling. In other words, both fuzzy

reasoning and network calculation will be available

simultaneously (Shoorehdeli et al. 2009). ANFIS is a

method based on considered input–output data for a sys-

tem. The main advantage of ANFIS is that it is one of the

best tradeoffs between neural and FS which provides

smoothness (due to the fuzzy control interpolation), and

adaptability (due to the NN back propagation). Moreover,

ANFIS has strong computational complexity restrictions

(Atkinson 1989; Bastian 2000). Success in obtaining a

reliable and robust ANFIS network heavily depends on the

choice of involved process variables, the available data set,

and the domain used for training purposes (Buragohain and

Mahanta 2008). In this study, statistical analyses (SPSS

software package) were applied in the comprehensive

flotation database to choose the most effective variables on

coal flotation responses (Recovery and rate constant), and

for computational modeling ANFIS, MATLAB software

package was used.

3 Results and discussion

3.1 Effects of various variables on coal recovery

According to the flotation test results (Fig. 1), recovery of

coal particles increased with the increasing of Sb (till Sb
reaches 27.43). After this point, flotation recovery is

decreased. Results also indicated that for k0
- dp\-300 lm, flotation recovery was minimum. The

decreasing of recovery can be explained by the high

efficiency of bubble-particle detachment. For k0
- dp * -200 lm, a sharp increase in the recovery can be

observed. In this condition, maximum recovery was

obtained (100 %) when Sb was 20.19 1/s. For k0
- dp = 0 lm, coal recovery was medium for all tests, and

for k0 - dp * 100 lm, a significant decrease in recovery

can be due to low efficiency of bubble-particle collision.

For maximum k0 - dp, a notable increase of recovery can

be observed which can be due to entrainment of fine coal

particles.

3.2 Effects of various variables on flotation rate

constant

Based on the results (Fig. 2) when k0 - dp = 0 lm,

flotation k was minimum. k increased by increasing | k0-dp|.
Maximum real k (flotation without entrainment) was 2.91

1/min when Sb was 19.08 1/s and k0 - dp was -223 lm.

Other variables did not show a significant effect on flota-

tion rate constant.

3.3 Statistical analysis

To find the most effective variables for the modeling, inter-

correlation have been used to explore and make relation-

ship among all variables and flotation responses. Inter-

correlation is a term used to denote the correlation of a

number of variables among themselves, as distinct from the

correlations between them and an ‘output’ or a dependent

variable. The correlation between two variables reflects the

degree to which the variables are related. The most com-

mon measure of correlation is the Pearson Product Moment

Correlation (called Pearson’s correlation for short ‘‘r’’).

r (inter-correlation) is a measure of linear association

between two variables. r values range from -1 to ?1. The

sign of the correlation indicates the direction of the rela-

tionship, and its absolute value indicates the strength, with

larger absolute values indicating stronger relationships. A

negative value for the correlation implies a negative or

inverse association, where a positive value means a posi-

tive association (SPSS 2004).

Results (Table 2) indicate that there is approximately

the same absolute r value between R with Rep, k0 - dp and

dp (r: -0.58, 0.61 and -0.60, respectively). Also there is a

strong correlation between Rep, k0 - dp and dp (r: 0.99)

that was predictable based on Eq. (6) (Fig. 3). The same

routine can be observed for the k, therefore; dp was chosen

as a representative parameter among particle character

variables for the prediction of recovery and k. This eval-

uation is in a good agreement with recent investigations

(Do 2010; Soni 2013) that concluded: ‘‘the flotation

kinetics and hence the recovery varies depending on
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particle sizes’’ (Do 2010; Soni 2013; Yoon et al. 2012).

The negative correlation (-0.61) between R and dp could

be due to the fact that there are difficulties in floating

coarse particles above approximately 149 lm (100 mesh),

and also ultra-fine particles approximately under 10 lm.

The optimum flotation occurs at the particle sizes in the

range of 20–105 lm.

From the inter-correlation results (Table 2), there is

meaningful negative relationship among R and k with

particle circularity ‘‘Cp’’ (r *-0.40). Results indicated that

increasing Cp would lead to a decrease in recovery and

k. This outcome can be explained by the latest findings that

flotation responses (floatability, hydrophobicity, etc.) are

driven by the impact of the collector on high energy surface

sites (most probably the edges) of the overall particle surface

(Guven et al. 2014). Therefore, by increasing Cp, floatability

and as a result recovery would be decreased. Based on this

fact Cp has been selected as another predictor variable.

Fig. 1 Flotation recovery of coal particles for different Sb and kp
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Moreover, results (Table 2) show significant correla-

tions among e, Reb and k0 (Fig. 4). These relationships can
be explained based on Eq. (6). Among these variables, e
that shows higher inter-correlation with flotation responses

was selected although results show there is not a note-

worthy r among e with R and k. Recent investigation also

reported that an increase in the energy dissipation rate (e)
from 1 to 10 kW/m3 resulted in a minor change in grade-

recovery curves (Soni 2013). Positive linear correlation

among Sb with R and k based on flotation tests was also

observed (Table 2). According to the latest studies: ‘‘a rise

in the airflow rate increased the recovery at a given particle

size’’ (Soni 2013). Therefore, Sb as a hydrodynamic

variable was chosen for the modeling. Additionally, there

is a meaningful positive relationship between R and k (r:

0.37) [which is in a good agreement with the general

concept of Eq. (2)].

3.4 Numerical modeling

Various linear and non-linear regressions were used to study

the potential relationship among selected particle character-

istics (dp and Cp) and hydrodynamic conditions (e, and Sb)

with flotation responses (k and R). Using stepwise multi-

variable linear regression, the following multivariable equa-

tions were developed to describe the possible relationship:

Fig. 2 Flotation rate constant of coal particles for different Sb and kp
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R %ð Þ ¼ 122:427� 0:092dp � 100:428Cp þ 0:932Sb
� 0:706e

R2 ¼ 0:42

ð8Þ

k 1=minð Þ ¼ 3:128þ 0:000249dp � 4:248Cp þ 0:018Sb
� 0:045e

R2 ¼ 0:2

ð9Þ

In the stepwise variable selection, variables are sequen-

tially entered into the model. The first variable considered for

reflecting into the equation is the one with largest positive or

negative correlation with the dependent variable. This vari-

able is entered into the equation only if it satisfies the criterion

for entry. The next variable, with the largest partial correla-

tion, is considered as the second equation input. The proce-

dure stops when there are no variables that meet the entry

criterion (SPSS 2004). Various nonlinear multivariable

regressions have been checked to improve correlation coef-

ficient (R2) versus linear models. Although nonlinear models

indicated [Eqs. (10) and (11)] higher R2 compared with linear

equations [Eqs. (8) and (9)], the difference between actual

Table 2 Inter-item correlation between various coal flotation variables with flotation responses (k and R)

Variables R k Dp Cp Rep k0 Sb k0-dp Reb e

R 1.000 0.37 -0.61 -0.40 -.58 -0.02 0.11 0.60 -0.02 0.07

k 0.37 1.000 -0.08 -.42 -0.03 0.02 0.07 0.09 0.01 -0.07

dp -0.61 -0.08 1.000 0.34 0.99 0.00 -.001 -0.99 0.00 -0.003

Cp -0.40 -0.42 0.34 1.000 0.31 0.00 0.00 -0.34 0.00 0.00

Rep -0.58 -0.03 0.99 0.31 1.000 0.00 0.00 -0.99 0.00 -0.001

k0 -0.02 0.02 0.003 0.00 0.001 1.000 -0.42 0.09 0.99 -0.98

Sb 0.11 0.07 -0.001 0.00 0.00 -0.42 1.000 -0.04 -0.42 0.41

k0-dp 0.60 0.08 -0.99 -0.34 -0.99 0.09 -0.04 1.000 0.09 -0.08

Reb -0.02 0.01 0.002 0.00 0.001 0.99 -0.424 0.09 1.000 -0.95

e 0.02 -0.07 -0.003 0.00 -0.001 -0.98 0.41 -0.08 -0.95 1.000

Fig. 3 Relationship among coal particle variables
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and predicted value from these equations are not satisfactory

for a predictive model (Fig. 5).

R %ð Þ ¼ �321:665� 1:35dp þ 0:006d2p � 7:898e�0:006d3p
þ 1783:39Cp � 1753:378C2

p þ 0:937Sb � 0:976e

R2 ¼ 0:63

ð10Þ

k 1=minð Þ ¼ 1:497� 0:016dp þ 7:586e�0:005d2p
� 9:41e�0:008d3p � 1:985Cp þ 0:661e

� 0:086e2 þ 0:014Sb
R2 ¼ 0:41:

ð11Þ

3.5 Soft computing (ANFIS)

The ANFIS procedures by the same regression inputs

were applied to improve predictions of regression models

(linear and non-linear). It has been widely established that

to model complex relationships, when regression (linear

or non-linear) cannot accurately correlate variables, soft

computing methodology can effectively be used, as this

technique is developed to exploit tolerance for impreci-

sion, uncertainty, and partial truth. From the total data-

base (64) used in the modeling by ANFIS, randomly 50

samples were selected for training phase and 14 data for

testing phase. ANFIS in the training phase can be made

more efficient by certain preprocessing steps. In this

study, all the input and output data in the training phase

were preprocessed by normalizing the inputs and targets

so that their mean was zero and their standard deviation

was 1:

Np ¼
Ap � meanAps

stdAp

ð12Þ

where Ap is the actual parameter, meanAps is the mean of

the actual parameters, stdAp is the standard deviation of the

actual parameters, and Np is the normalized parameter, the

input data (Demuth and Beale 2002). Table 3 shows the

parameters of the ANFIS models for the prediction of k and

R based on the input set (dp, Cp, Sb, and e). After a suc-

cessful training phase, in testing stage, the correlation

coefficients (R2) of k and R for predictions were 0.85, and

0.99, respectively. It can be observed that k and R pre-

diction using the input set and ANFIS procedure is

acceptable and satisfactory (Fig. 5). According to these

results, it can be concluded that the proposed ANFIS pro-

cedures yield significant predictions of coal flotation

responses based on particle characteristics and hydrody-

namic conditions, and these soft computing models can be

used in the industrial control systems to monitor the froth

flotation process of coal particles.

Fig. 4 Relationship among flotation hydrodynamic variables
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4 Conclusions

In the coal industry, flotation continues to be a challenge in

many coal preparation plants as operators need to have a

sound understanding of the flotation process in order to

trouble-shoot and optimize the performance of the whole

plant. Conducting a model for the coal flotation would be

beneficial to fully understand operations of units, train

Fig. 5 Differences between actual and predicted R and k by various models

Table 3 Parameters of ANFIS models for prediction of k and

R based on various the input set (dp, Cp, Sb, and e)

Variable Radius training Epoch SZDRa SZIRb R2

k 0.19 1000 0.95 1.1 0.85

R 0.48 500 0.95 1.1 0.99

a Step size decrease rate
b Step size increase rate
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operators and control the whole process. Due to the sig-

nificant difficulty of integrating complex flotation sub-

processes in a model, numerical method in fundamental

models has many limitations (considering a long list of

variables). This investigation presented a method for

variable selection and based on that selection, presented

considerable models for the prediction of coal flotation

responses (flotation rate constant and recovery). A com-

prehensive database was prepared with 64 flotation tests

under various conditions. Through the database, statistical

analyses were performed to select effective variable and to

better understand the relationship among particle charac-

teristics (size, particle Reynolds number, micro scale tur-

bulence for particles and circularity) and hydrodynamic

conditions (bubble Reynolds number, micro scale turbu-

lence for bubbles, energy dissipation, and bubble surface

area flux) with the flotation rate constant and recovery of

coal particles.

Based on the statistical analyses four variables have

been chosen (size, circularity, energy dissipation, and

bubble surface area flux) as inputs for the prediction coal

flotation responses. Multivariable regressions were con-

ducted to provide statistical models among inputs with the

flotation rate constant and recovery (as outputs). The cor-

relation coefficients of nonlinear models were 0.41 and

0.63 for the flotation rate constant and recovery, respec-

tively (which were not satisfactory). Adaptive network

based on fuzzy inference system (ANFIS) models was used

to accurately correlate variables. In the ANFIS testing

process, models predicted both recovery and flotation rate

constant quite satisfactorily. The correlation coefficients

between actual and predicted values in testing phase were

0.99 and 0.85 for recovery and flotation rate constant,

respectively. From the results, it can be concluded that the

method applied and its results can be further used as an

expert system in froth flotation to optimize the process

parameters and evaluate the parameter interactions for the

expected recovery responses.
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bution, and reproduction in anymedium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.
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