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Abstract This paper presents modelling of a post-combustion CO2 capture process using bootstrap aggregated extreme

learning machine (ELM). ELM randomly assigns the weights between input and hidden layers and obtains the weights

between the hidden layer and output layer using regression type approach in one step. This feature allows an ELM model

being developed very quickly. This paper proposes using principal component regression to obtain the weights between the

hidden and output layers to address the collinearity issue among hidden neuron outputs. Due to the weights between input

and hidden layers are randomly assigned, ELM models could have variations in performance. This paper proposes

combining multiple ELM models to enhance model prediction accuracy and reliability. To predict the CO2 production rate

and CO2 capture level, eight parameters in the process were utilized as model input variables: inlet gas flow rate, CO2

concentration in inlet flow gas, inlet gas temperature, inlet gas pressure, lean solvent flow rate, lean solvent temperature,

lean loading and reboiler duty. The bootstrap re-sampling of training data was applied for building each single ELM and

then the individual ELMs are stacked, thereby enhancing the model accuracy and reliability. The bootstrap aggregated

extreme learning machine can provide fast learning speed and good generalization performance, which will be used to

optimize the CO2 capture process.
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1 Introduction

Greenhouse emissions (GHE), mainly carbon dioxide

(CO2), is identified as the chief reason resulting in the

global climate change, especially the global warming. The

growing energy demand, due to rapid increasing population

and development of industrialization, are directly linked to

the increasing release of GHE. The target of a 50%

reduction of CO2 emission by 2050 comparing with the

level in 1950 is set by the Intergovernmental Panel on

Climate Change.

Carbon capture and storage (CCS) has been widely

believed as an advanced technology to achieveCO2 emission

reduction, which captures, transports and stores CO2. There

are three major types of technologies applied for CCS: post-

combustion, pre-combustion and oxyfuel combustion.

Among these various CCS technologies, post-combustion

CO2 capture (PCC) process is considered as the most con-

venient way to reduce CO2 emission from coal fired power

plants, as it can retrofit the exiting power plant and be inte-

grated into new ones. However, PCC process will generate a

large amount of energy penalty, which reduces the efficiency

and effectiveness of the power plant. The energy requirement

is strongly influenced by the operation conditions, equip-

ment dimensions and capture target of PCC process.

Therefore, it is necessary to apply process optimisation in

order to enhance the efficiency of CCS systems.
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In order to optimize the operation of post-combustion

CO2 capture process, a reliable and accurate process model

is necessary. In the past, researchers have proposed various

kinds of modelling technologies, such as mechanistic

models (Lawal et al. 2010; Biliyok et al. 2012; Posch and

Haider 2013; Cormos and Daraban 2015) and data-driven

models (Zhou et al. 2009, 2010; Sipocz and Assadi 2011).

However, some problems have been raised up by using the

above mentioned methods. For instance, the development

of mechanistic model is not only time consuming, but also

needs a huge volume of knowledge of the underlying first

principles of the process. It is also computationally very

demanding when using a detailed mechanistic model in

process optimisation. Statistic models can overcome these

problems and are efficient in building data driven models,

but they still have a few shortcomings. It is shown in that

statistical model is unable to describe the nonlinear rela-

tionships that possibly exits among the parameters (Zhou

et al. 2010). In this case, another advanced modelling

method, artificial neural networks (ANNs), is proposed to

address the above weakness. However, feedforward neural

networks trained by the back propagation (BP) learning

algorithm have some issues: firstly, the most appropriate

learning rate is difficult to determine; secondly, the pres-

ence of local minima affects the modelling results; then,

networks would possibly be over trained leading to poor

generalization performance; lastly, it is also time-con-

suming when applying gradient based learning (Huang

et al. 2006).

Extreme learning machine (ELM) was proposed into

address the issue of slow training in conventional feed-

forward neural networks (Huang et al. 2006). ELM is

basically a single hidden layer feedforward neural network

with randomly assigned weights between the input and

hidden layers. The weights between the hidden and output

layers are determined in a one-step regression type

approach using generalised inverse. Thus, an ELM can be

built very quickly. As the weights between the input and

hidden layers are randomly assigned, correlations can exist

among the hidden neuron outputs and variations in model

performance can exist. This paper proposes using principal

component regression (PCR) to obtain the weights between

the hidden and output layers in order to overcome the

correlation issue among hidden neuron outputs. This paper

also proposes building multiple ELMs on bootstrap re-

sampling replications of the original training data and then

combining these ELMs in order to enhance model accuracy

and reliability. The proposed method is applied to the

dynamic model development of the whole post-combustion

process plant.

This paper is structured as follows: Sect. 2 briefly pre-

sents post-combustion CO2 capture process through

chemical absorption. Extreme learning machine, a method

for calculating output layer weights in ELM using PCR,

and aggregating multiple ELM are given in Sect. 3.

Application results and discussions are presented in

Sect. 4. Section 5 draws some concluded remarks.

2 CO2 capture process through chemical
absorption

Figure 1 shows a typical post-combustion CO2 capture

process through chemical absorption. It consists of two

major parts: an absorber and a stripper. In details, the flue

gas from the power plant is pressured into the bottom of

absorber and contacted counter-currently with lean MEA

solution from the top side. The lean MEA solution will

chemically absorb the CO2 in flue gas, forming rich amine

solution. The treated gas stream containing much lower

CO2 content is leaving from the top of absorber. Then the

rich amine solution is pressured into the regenerator before

preheating in the cross heat exchanger. In the stripper, CO2

is separated from rich amine solution by the heat provided

from the reboiler. The regenerated CO2 is cooled in con-

denser and compressed for storage, and remaining solution

(lean solution) is recycled to the cross heat exchanger to

exchange heat with rich amine. The heat supplied in the

reboiler, coming from the low pressure steam from power

plant, is used to increase the temperature of solution, sep-

arate CO2 from rich amine and vaporize the gas in stripper.

This will result in a large energy consumption.

Two parameters are identified to affect the process

performance: CO2 capture level and CO2 production rate.

CO2 capture level is the amount of CO2 extracted from the

Fig. 1 Simplified process flow diagram of chemical absorption

process for post-combustion capture plant
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inlet flue gas in absorber column, which is calculated in

Eq. (1).

gco2 capture ¼ 1� moutlet co2 � Voutlet gas

minlet co2 � Vinlet gas

ð1Þ

where, moutlet co2 , Voutlet gas, minlet co2 and Vinlet gas represent

CO2 mass fraction in gas out of absorber, gas flow rate out

of absorber, CO2 mass fraction in inlet flow gas of absor-

ber, and inlet gas flow rate of absorber, respectively.

CO2 production rate represents the amount of CO2

captured after the condenser, which is an indicator for the

whole process because it is not affected by a single com-

ponent of the process. It is calculated as in Eq. (2):

oco2 ¼ _mco2 � ~voutlet gas ð2Þ

where oco2 is CO2 production rate after the condenser, _mco2

and ~voutlet gas are CO2 mass fraction and gas flow rate of the

outlet gas from stripper respectively.

3 Bootstrap aggregated ELM

3.1 Single hidden layer neural networks

Figure 2 shows the structure of a single hidden layer

feedforward neural network (SLFN). For N arbitrary dis-

tinct samples (xi, ti), where x ¼ xi1; xi2; . . .; xin½ �T2 Rn is a

vector of network inputs and ti ¼ ti1; ti2; . . .; tim½ �T2 Rm is a

vector of the target values of network outputs. The output

of a standard SLFNs with Ñ hidden nodes and activation

function g(x) is shown in the following equation:

oj ¼
X~N

i¼1

bigi wixj þ bi
� �

; j ¼ 1; . . .;N ð3Þ

where wi ¼ wi1;wi2; . . .;win½ �T is a vector of the weights

between the ith hidden node and the input nodes, bi is the

bias of the ith hidden nodes, xj is the jth input sample,

oj = [oj1, oj2, …, ojm]
T [ Rm is a vector of the SLFN out-

put corresponding to the jth input sample, bi [ Rm is a

vector of the weight linking the ith hidden node and the

output node. The output node is chosen to have linear

activation function and the hidden layer neurons use the

sigmoid activation function in this paper.

In theory, the standard SLFNs can approximate any

continuous nonlinear functions with zero error, which

means
P ~N

j¼1 oj � tj
�� ���� �� ¼ 0. Specifically, there exits bi, wi

and bi to make:

X~N

i¼1

bigi wi � xj þ bi
� �

¼ tj; j ¼ 1; . . .;N ð4Þ

The above equation can be written as Hb = T, where:

H w1; . . .;w ~N ; b1; . . .; b ~N ; x1; . . .; x ~N

� �

¼
g w1 � x1 þ b1ð Þ � � � g w ~N � x1 þ b ~N

� �

..

. . .
. ..

.

g w1 � xN þ b1ð Þ � � � g w ~N � xN þ b ~N

� �

2

64

3

75

N� ~N

ð5Þ

b ¼
bT1
..
.

bT~N

2
64

3
75

~N�m

and T ¼
tT1

..

.

tTN

2
64

3
75

N�m

ð6Þ

In the above equations, H is called hidden layer output

matrix of the neural network and the ith column of H is the

ith hidden node output with respect to inputs x1, x2, …, xN.

Training of SLFNs can be done through finding the mini-

mum value of E ¼ min HN� Nb N�m � TN�mk k.
SLFNs are usually trained by gradient-based learning

algorithms, such as BP algorithm, which typically need

many iterations and are typically slow. The process of

training is to search the minimum value of

HN� Nb N�m � TN�mk k by numerical optimisation meth-

ods. In this procedure, the parameters h = (b, w, b) is

iteratively adjusted as below:

h ¼ hk�1 � g
oE hð Þ
oh

ð7Þ

where g is the learning rate. By using BP algorithm, the

parameters are updated by error propagation from the

output layer to the input layer.

3.2 Bootstrap aggregated ELM

Huang et al. have proved that, if the activation function

g(x) is infinitely differentiable in any interval and the

number of hidden nodes is large enough, it is not necessary

to adjust all the weighting parameters of the network

(Huang et al. 2006). In other words, the weights and biases

xj 

1 n 

1 i Ñ 

Oj 

1 

H(w1, b1, x) H(wÑ, bÑ, xÑ) 

H(wi, bi, xi) 

βj β1 βÑ 

m 

Fig. 2 The structure of single hidden layer feedforward networks
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between the input and hidden layers can be randomly

chosen. In order to get good performance, the required

number of hidden nodes is not more than the number of

input samples. Huang et al. have used a method of finding a

least square solution of the linear equation Hb = T to

obtain the weights between the hidden and output layers.

b ¼ HyT ð8Þ

where Hy is the generalised inverse of H.

However, as the hidden layer outputs can be collinear,

the modelling performance would be poor by using least

square solution to find the weights between the hidden and

output layers. This would be especially true for ELM as

they have randomly assigned hidden layer weights and

typically large number of hidden neurons are required. This

paper proposes using PCR to obtain the weights between

the hidden and output layers to overcome the multi-

collinearity problems. Instead of regressing H and T di-

rectly, the principal components of H matrix are used as

regressors.

The matrix H can be decomposed into the sum of a

series of rank one matrices through principal component

decomposition.

H ¼ u1p
T
1 þ u2p

T
2 þ � � � þ uNp

T
N ð9Þ

In the above equation, ui and pi are the ith score vector

and loading vector respectively. The score vectors are

orthogonal, likewise the loading vectors, in addition they

are of unit length. The loading vector p1 defines the

direction of the greatest variability and the score vector u1,

also known as the first principal component, represents the

projection of each column of H onto p1. The first principal

component is thus that linear combination of the columns

in H explaining the greatest amount of variability

(u1 = Hp1). The second principal component is that linear

combination of the columns in H explaining the next

greatest amount of variability (u2 = Hp2) subject to the

condition that it is orthogonal to the first principal com-

ponent. Principal components are arranged in decreasing

order of variability explained. Since the columns in H are

highly correlated, the first a few principal components can

explain the majority of data variability in H.

H ¼ UkP
T
k þ E ¼

Xk

i¼1

uip
T
i þ E ð10Þ

where Uk = [u1u2 … uk], Pk = [p1p2 … pk], k represents

the number of principal components to retain, and E is a

matrix of residuals of unfitted variation.

If the first k principal components can adequately rep-

resent the original data set H, then regression can be per-

formed on the first k principal components. The model

output is obtained as a linear combination of the first k

principal components of H as

T̂ ¼ Ukw ¼ HPkw ð11Þ

where w is a vector of model parameters in terms of

principal components.

The least squares estimation of w is:

w ¼ UT
kUk

� ��1
UT

kT ¼ PTkH
THPk

� ��1
PTkH

TT ð12Þ

The model parameters in Eq. (8) calculated through

PCR are then given by the following equation:

b ¼ Pkw ¼ Pk PTkH
THPk

� ��1
PTkH

TT ð13Þ

The number of principal components, k, to be retained in

the model is usually determined through cross-validation

(Wold 1978). The data set for building a model is parti-

tioned into a training data set and a testing data set. PCR

models with different numbers of principal components are

developed on the training data and then tested on the

testing data. The model with the smallest testing errors is

then considered as having the most appropriate number of

principal components.

As shown in (Zhang 1999; Li et al. 2015), combining

several networks can improve the prediction accuracy on

unseen data and give a better generalization performance.

The bootstrap re-sampling replication of the original

training data is used for training individual networks and

the overall output of the aggregated neural networks is a

weighted combination of the individual neural network

outputs (Fig. 3).

Therefore, the procedure of building bootstrap aggre-

gated ELM model can be summarized as follows:

Given an activation function g(x), and number of hidden

nodes Ñ,

Step 1: Apply bootstrap re-sampling to produce n (e.g.

n = 50) replications of the original training data

set, (xi, ti)1,…, (xi, ti)n, xi 2 Rn, ti 2 Rm, i = 1,…,

N

Fig. 3 A bootstrap aggregated neural network
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Step 2: On each bootstrap replication of the original

training data, build an ELM model:

Step 2(a): Randomly assign hidden layer

weights wi and bias bi, i = 1… Ñ

Step 2(b): Calculate the hidden layer output

matrix H

Step 2(c): Calculate the output weights b by

PCR

Step 3: Combine the n (e.g. n = 50) ELM models by

averaging their predictions

It has been suggested that, the model prediction confi-

dence bounds can be calculated from individual predictions

by using bootstrap aggregated neural networks (Zhang

1999; Li et al. 2015). The standard error of the ith predicted

value is calculated as

re ¼
1

n� 1

Xn

b¼1

y xi;W
b

� �
� y xi;ð Þ

� �2
( )1

2

ð14Þ

where y(xi) =
P

b=1
n y(xi; W

b)/n and n is the number of

neural networks. The 95% prediction confidence bounds

can be calculated as y(xi;) ± 1.96re. It indicates a 95%

confidence interval which will contain the true process

output with a probability of 0.95. A narrower confidence

bound is preferred as it indicates the associated model

prediction is more reliable.

4 Performance evaluation

The simulated dynamic process operation data in (Li et al.

2015) were used to build data-driven models. The simu-

lated data were generated from the mechanistic model

implemented in gPROMS at University of Hull with a

sampling time of 5 s. The data were divided into three

groups: training data (56%), testing data (24%), and unseen

validation data (20%). Furthermore, the constructed model

used the input data of the second batch in which the lean

solution flow rate has a step change, to verify its accuracy.

To demonstrate the good performance of bootstrap aggre-

gated ELM, its results are compared with those from (Li

et al. 2015). Before training, the data should be scaled to

zero mean and unit variance. Both bootstrap aggregated

neural network (BA-NNs) and BA-ELM models combine

30 neural networks. In addition, the numbers of hidden

neurons used in BA-NNs and BA-ELM are selected within

the range of 2–20 and 40–100 respectively. All models

with the number of hidden neurons in the above ranges are

developed and tested on the testing data. The models give

Table 1 Performance comparison of BA-ELM and BA-NNs for CO2 production rate

Learning algorithm Time (CPU time) (s) Training accuracy (MSE) Validation accuracy

(MSE)
Training time Verifying time

(2nd batch)

Bootstrap aggregated ELM (BA-ELM) 163.4422 0.7176 0.0488 0.0441

Bootstrap aggregated neural networks

(BA-NNs)

1726.4 0.2964 0.0219 0.0771
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Fig. 4 Dynamic model prediction of CO2 production rate using BA-

ELM (top) and BA-NNs (bottom)
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the smallest mean squared errors (MSE) are considered as

having the appropriate number of hidden neurons. The

reason for ELM having more hidden neurons is due to the

random nature of hidden layer weights in ELM and small

number of hidden neurons would usually not be able to

provide adequate function representation. The form of the

dynamic model is shown in Eq. (15).

yðtÞ ¼ f y t � 1ð Þ; u1 t � 1ð Þ; u2 t � 1ð Þ; . . .; u8 t � 1ð Þð Þ
ð15Þ

where y represents CO2 capture level or CO2 production

rate, u1 to u8 are, respectively, inlet gas flow rate, CO2

concentration in inlet flue gas, inlet gas temperature, inlet

gas pressure, MEA circulation rate, lean loading, lean

solution temperature, and reboiler temperature. Equa-

tion (15) represents a first order nonlinear dynamic model

which is of the lowest order. For practical applications,

model of the least complexity is generally preferred. If the

low order nonlinear dynamic model could not give

satisfactory performance, then higher order nonlinear

dynamic models should be considered.

When developing the two different models, it is clearly

seen that BA-ELM model is very simple because its

training only needs one iteration. The performance com-

parison of the bootstrap aggregated neural networks and

bootstrap aggregated ELM is shown in Table 1. The

training CPU time of BA-ELM is about nine times lower

than that of BA-NNs. The short training time of BA-ELM

is due to the fact that each individual ELM is trained in one

step without the need of gradient based iterative training.

The verification time of BA-ELM is longer than that of

BA-NN as the individual ELMs have more hidden neurons

than the individual networks in BA-NN. The MSE value on

the unseen validation data from BA-NNs is higher than that

from BA-ELM. This could be due to the training of some

neural networks in BA-NN might have been trapped in

local minima or over fitted the noise. The results given in

Table 1 demonstrate that BA-ELM is able to train faster

and perform better than BA-NNs. The performance of one-

step ahead predictions and multi-step ahead predictions of

CO2 production rate in BA-ELM and BA-NNs is indicated

in Fig. 4. Clearly, the prediction using BA-ELM model is
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Fig. 5 MSE of CO2 production rate for individual ELM models

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

M
S

E
 (t

ra
in

in
g 

&
 te

st
in

g)

Number of neural networks

0 5 10 15 20 25 30 35
0

0.05

0.1

M
S

E
 (v

al
id

at
io

n)

Number of neural networks

Fig. 6 MSE of CO2 production rate for bootstrap aggregated ELM
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Fig. 7 Dynamic model prediction of CO2 capture level using BA-

ELM (top) and BA-NNs (bottom)
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much better than that using BA-NNs model, especially

after 92 steps for the long range prediction.

The MSE values of CO2 production rate for individual

ELM models can be seen in Fig. 5. The performance on the

unseen validation data is not in accordance with that on the

training and testing data. For instance, the prediction on the

unseen validation data by the 20th ELM is the worst,

however, its performance on the training and testing data is

better than many of the individual ELM models. This

clearly demonstrates that single network has non-robust

nature. Nevertheless, when several individual networks are

combined together to build the model, the weakness can be

addressed easily. Figure 6 indicates the MSE values on

model building data by aggregating different numbers of

ELM models. The first bar in Fig. 6 represents the first

individual ELM model shown in Fig. 5, the second bar

represents the combination of the first two individual ELM

models, and the last bar represents combining all the

individual ELM models. Look into the trends of top and

bottom plots in Fig. 6, the prediction performance of

bootstrap aggregated ELM on the unseen validation data is

consistent with that on the training and testing data. In

other words, combining several ELM models is able to get

more accurate predictions on the training and testing data,

as well as on the unseen validation data, than single ELM

models. Furthermore, the MSE values in Fig. 6 indicates

that, the aggregated ELM model provides more accurate

predictions than single ELM models, when comparing with

the MSE values in Fig. 5.

Figure 7 shows the performance comparison of one-

step-ahead predictions and multi-step-ahead predictions of

CO2 capture level using BA-ELM and BA-NNs models. It

is clear seen from the bottom graph both one-step-ahead

predictions and multi-step-ahead predictions from BA-NN

are reasonably accurate though some errors are observable,

but the long range predictions (green line) are not accurate

after 82 steps (410 s). However, in the top graph, the

accurate one-step-ahead predictions and multi-step-ahead

predictions from BA-ELM are very encouraging, indicat-

ing that the model has captured the underlying dynamics of

the process. Such accurate long range predictions can be

further used for model predictive control and real-time

optimisation applications.

The performance comparison of the bootstrap aggre-

gated neural networks and bootstrap aggregated ELM for

CO2 capture level is shown in Table 2. The training CPU

time of BA-ELM is six times lower than that of BA-NN,

while its verifying CPU time is a little bit longer than the

latter one. This is because each network in the BA-ELM

has more hidden neurons than each network in BA-NN.

Looking into the comparison of the accuracy, the mean

squared error (MSE) values on training data in both models

are almost same, while the MSE value of BA-ELM on

validation data is three times lower than that of BA-NNs.

This shows that BA-ELM has a faster training speed and

better generalization performance than BA-NNs, which has

been proved in Huang et al. (2006). The faster training

speed of BA-ELM is due to the ELMs are trained in a one-

step procedure without the need of gradient based iterative

procedure.

5 Conclusions

The BA-ELMs is demonstrated as a powerful tool to model

the post-combustion CO2 process, which can be trained

much faster and is more accurate than the BA-NNs models.

It gives a good generalization performance on unseen data,

because the aggregation of multiple ELM can make the

model avoid being trapped into local minima and over-

fitting problems. As ELM can be trained very quickly

without iterative network weight updating, aggregating

multiple ELMs does not pose any computational issues in

model development. The model will be used to optimize

the CO2 capture process in the future. The model prediction

confidence bounds provided by the BA-ELM can be

incorporated in the optimisation objective function to

enhance the reliability of the optimisation (Zhang 2004).

Nevertheless, the BA-ELM still exits some problems. For

instance, the number of hidden neurons is quite large,

which may increase the model computation burden in

Table 2 Performance comparison of BA-ELM and BA-NNs for CO2 capture level

Learning algorithm Time (CPU time) (s) Training accuracy (MSE) Validation accuracy

(MSE)
Training time Verifying time

(2nd batch)

Bootstrap aggregated ELM (BA-ELM) 292.8919 0.8112 0.0034 0.00043

Bootstrap aggregated neural networks

(BA-NNs)

1902.1 0.5148 0.0030 0.0015
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optimisation studies. Further works on BA-ELM will be

carried out to address these shortcomings.
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