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Abstract In China, the connection between coal utilization and environmental pollution has been increasingly evident due

to the rapid growth in energy consumption. Clean coal technology (CCT) is one of the effective methods to address coal-

associated pollution. However, CCT needs the practical and theoretical support of clean coal geology (CCG). In this paper,

a new definition of CCG is proposed, based on the definitions of coal, coal geology, and CCT, combined with the

development of national CCG. CCG is the discipline comprehensively researching the genesis, nature, distribution,

cleaning potential, clean utilization and environmental effects of resources (coal, coal bed methane, and other coal-

associated resources) that can be cleaned by CCT. The research content of CCG is discussed from different aspects, such as

cleaning potential evaluation, geological guarantee for coal mining, ash yields and sulfur contents, trace elements, pollution

caused by coal, and mine reclamation. The progress of CCG in China is also briefly divided into four stages and delineated.

Finally, scientific problems in CCG are summarized and an outlook for CCG is given.

Keywords Clean coal � Clean coal geology � Research content � Progress � China

1 Introduction

Coal dominates the primary energy in China and likely will

remain so for the foreseeable future. This is largely because

China is rich in coal but poor in petroleum and natural gas

(National Bureau of Statistics of China 2018). At the same

time, China is the largest consumer of coal, accounting for

about 50.5% of world coal consumption in 2018 and is

expected to remain so, at a proportion of about 39%, until

about 2040 (BP 2019a, b). Coal, as the main energy source,

promoted the economic development of China, but never-

theless also contributed to a range of environmental issues

(Lin et al. 2004; Dai et al. 2006a, 2012a; Wu 2010; Brauer

et al. 2013;Huang et al. 2014;Guan et al. 2014;Maet al. 2017;

Finkelman and Tian 2018).

Clean coal technology (CCT) is a key to address these

environmental issues. Globally, there are many different

combinations of various technologies used as CCTs in dif-

ferent countries and regions (Melikoglu 2018). Some of the

CCTs (such as NOx and SO2 capture in these developed

countries) are mature and others (carbon capture, utilization

and storage, CCUS) are in initial stages or under development

in various countries around the world (Melikoglu 2018).

These less mature CCTs can be improved with economic

supports from incentives and carbon-tax refunds (Melikoglu

2018). In early 2015, Academician Kechang Xie, the vice-

president of the Chinese Academy of Engineering, recom-

mended that China should speed up research and the devel-

opment of CCT and its industrial utilization (Xie 2015). He
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also recommended that CCT should have independent intel-

lectual property rights, to provide an initiative for develop-

ment, as part of the development plan for coal inChina in 2030

(Xie 2015). The substance of clean and efficient utilization of

coal is to promote its clean use throughout the whole coal

industry and the industrial chain that depends on coal (Xie

2015). The projects—clean and efficient utilization of coal

and full implementation of low emissions and energy saving

reforms for coal-fired units—are two of the 100major projects

in the Chinese 13th five-year plan. In 2016, experts in coal

geology established the clean coal geological professional

committee (Editorial office of coal geology of China 2016),

which fully illustrated their attention to clean coal geology

(CCG). At the 19th Communist Party of China (CPC)

National Congress, promoting the reform of ecological civi-

lization to build a livable China was proposed, the significant

component of which was clean, efficient, and comprehensive

utilization of coal resources. The conflict between construc-

tion of ecological civilization and pollution associated with

coal utilization will promote the development of CCG in the

future, which is very important for addressing such pollution.

These factors strongly indicate that CCG is of great

importance and necessity. As such, this paper redefines and

delineates the concept of CCG and shows its main com-

ponent of research and its progress in China from geo-

logical aspects, which can provide an appropriate reference

for using coal comprehensively and efficiently and for

clean coal research.

2 Clean coal geology

Coal, widely used as a natural fuel, is defined as a com-

bustible organic layered sedimentary rock with ash yield

(dry basis) being less than 50%, and which usually is

characterized by black or brown color (GB/T5751–2009

2009). Coal, comprised of macerals and mineral mat-

ter (Finkelman et al. 2019; Dai et al. 2020a), was formed

by the biochemical and geochemical transformation of

accumulated and preserved remains of plants, over the

course of geological time, under the effects of temperature

and pressure (Encyclopedia of China Publishing House

1993; GB/T5751–2009 2009). Usually the accumulation

and transformation of the original plant material occurred

in an oxygen-deficient depositional environment, such as a

mire, where the plant material could be covered with water

(Encyclopedia of China Publishing House 1993; GB/

T5751-2009 2009; Dai et al. 2020b). Historically, coal has

supported the development of Chinese industry and econ-

omy because it is cheap, readily minable, easy to transport

and combust, and occurs in great reserves. But, with

increasing deterioration of the environment, intensive and

systematic researches on CCG and CCT are not only

necessary but also imperative.

In the 1980s, the concept of clean coal was proposed by

Drew Lewis and William Davis who both were dealing

with the issues of acid rain pollution in the border between

America and Canada (Abelson 1985, 1990). Currently,

CCT has become one of the leading technologies in the

world to solve environmental issues and also is a signifi-

cant field of international high-tech competition (China

Industrial Information Network 2016). CCT was originated

from the United States, and included in the Energy Dic-

tionary in the 1980s, which referred to advanced tech-

nologies such as the processing, conversion, combustion

and pollution control, aimed at reducing emissions and

improving efficiency in the whole process from mining to

utilization of coal (Abelson 1985, 1990; Zheng 1996). CCT

can be divided into different categories according to the

processes of production or utilization, such as clean tech-

nology before coal combustion, clean combustion tech-

nology, clean technology after coal combustion, and coal

conversion (Zheng 1996). In China, CCT focuses on a

series of technologies, such as mining, transportation,

preparation, conversion, and combustion, covering the

whole process from mining to utilization of coal (Zheng

1996). In comparison, CCG emphasizes the natural and

geological characteristics of coal itself and the cleaning

potentials of coal resources. Tang et al. (2006) proposed

that the term ‘‘clean coal’’ meant the coal with low pol-

lutant emissions during preparation and utilization or the

coal having good cleaning potentials. Nevertheless, we

assert that ‘‘clean coal’’ refers more broadly to the use of

processed (i.e., cleaned) coal in CCT, where clean coal can

be used efficiently with low emissions.

Coal geology involves research on the components, gen-

esis, nature, distribution, exploration, utilization, and envi-

ronmental effects of coal, coal seams, coal-bearing strata,

coal basins, and coal-associated mineral resources (such as

coal bedmethane, accompanying elements, and coal-formed

oil), based on geological theories andmethods. Coal geology

is closely related to lithology, tectonics, sedimentology,

geology of ore deposits, geophysics, and petroleum geology

(Yang and Han 1979; Yang and Zhou 1996; Huang and

Zhang 2005; Cao et al. 2010). A definition of CCG given by

Tang et al. (2006) was that it is the research discipline con-

cerning the availability of coal and the abundance, distri-

bution, modes of occurrence, transformations, and effects on

human health of trace elements in coal, on the basis of in-

depth understanding of environmental factors. Thus, CCG is

a new field formed by combination and integration of coal

geology, environmental science, CCT, chemistry, and biol-

ogy. To the best of our knowledge, no one outside of China

has proposed such a definition of CCG.

A new definition of CCG is proposed in the present

paper. Specifically, CCG is the discipline comprehensively

researching the genesis, nature, distribution, cleaning
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potential, clean utilization and environmental effects of

resources (coal, coal bed methane, and other coal-associ-

ated resources) that can be cleaned by CCT.CCG uses a

multi-disciplinary approach, combining the theories and

methods of geology, petrology, chemistry, mineralogy,

environmental science, mathematical statistics, and coal

technology. CCG also can incorporate aspects of coal

cleaning assessments, geophysics, hydrogeology, mining

geology, mine reclamation, coal preparation, coal conver-

sion, and clean utilization of coal. The primary aim of CCG

is to maximize the utilization of the valuable components

in coal and to minimize the discharge of the undesirable or

potentially harmful parts. CCG, combined with CCT,

predicts and evaluates the emissions from coal during

processing, conversion, and utilization.

3 Research directions of clean coal geology

The research directions of CCG include, but are not limited

to, cleaning potential evaluation of coal resources, geo-

logical guarantee for safe and efficient mining (providing

geological information, such as faults, folding, and thick-

ness of coal seams for mining), measuring ash yields,

sulfur contents, trace elements in coal, preventing and

controlling of emissions associated with coal utilization,

and mine reclamation, as shown in Fig. 1.

3.1 Evaluation of cleaning potentials

The cleaning potential evaluation of coal resources is done

to assess quality and cleaning potentials of coal according

to related data (such as ash yields, sulfur contents, and

contents of potentially hazardous trace elements) and to

classify and delineate coal resources of different qualities

and cleaning potentials, to provide the geological basis for

exploitation of different coal resources. Coal quality is

expressed as the classification of raw coal based on ash

yields, sulfur contents, and hazardous trace elements (Tang

et al. 2012, 2013). Cleaning grade usually corresponds to

the quality of the coals treated by CCT (Yang et al. 2011).

Cleaning potential refers to the degree of removal of

minerals, and potentially hazardous trace elements in coal

after coal preparation (Tang et al. 2017).

Coal quality is classified based on the indexes of ash

yield, sulfur content, and calorific value, which were gra-

ded by the National Coal Standardization Technical

Committee of China in 1994, 2004, 2010, and 2018 (GB/T

15224–1994 1994; GB/T 15224–2004 2004; GB/T

15224–2010 2010; GB/T 15224–2018 2018). The ash

yields and sulfur contents of Chinese coals were graded

and summarized during the third national coalfield

assessment with the quality of coal being classified, based

on parameters such as ash yield, sulfur content, calorific

value and washability (Mao and Xu, 1999; Yuan, 1999).

The concept of high-quality coal was proposed by Yuan

(1999) and redefined by Li et al. (2008) in the study of

Chinese western coal resources, and was used to evaluate

and delineate favorable areas of high-quality coal resources

in the Ordos Basin. According to geological characteristics

of coal, the quality of coal was divided into six grades by

Tang et al. (2012, 2013). Their approach was applied to

coal resource evaluation in Shanxi Provence and in Inner

Mongolia. Grade definition and regional division of

cleaning potentials of coal resources are one of the main

research components of CCG (Tang and Ma 2005; Tang

Fig. 1 Main directions of CCG research
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et al. 2006). At present, there are several cleaning potential

evaluation systems in China: the four-grade scheme (Wang

et al. 2005; Wang and Qin 2011), the five-grade classifi-

cation schemes adopted by the geological study of clean

coal in China organized by the China National Adminis-

tration of Coal Geology (Tang et al. 2006), and the six-

grade scheme, proposed by Yang et al. (2011) and used for

coal resource evaluation in such provinces as Guizhou,

Anhui, and Shanxi. In areas where geological information

was relatively complete, coals were classified as clean, sub-

clean, less clean and unclean resources by Tang et al.

(2006). This method was used to the evaluate coal

resources in the West Guizhou-East Yunnan area. By

comparing the characteristics before and after coal prepa-

ration, a formula for calculating coal cleanability was

proposed by Tang et al. (2017) and used to evaluate coal

resources in Shanxi province (Wang et al. 2018; Tang et al.

2020) The cleaning potentials of coal resources were

classified into five categories according to cleanability

(Tang et al. 2017).

The classification schemes of cleaning potential pro-

posed by different scholars (Wang et al. 2005; Tang

SH et al. 2006 Wang and Qin 2011; Yang et al. 2011; Tang

YG et al. 2012, 2013, 2017) are different, although the

indexes adopted in evaluation systems are similar. In brief,

these evaluation indexes can be summarized in three cat-

egories: ash yields, sulfur contents and hazardous trace

elements. For the evaluation of coal resources in large

regions (such as the entire nation, or in one particular

province), the indexes of ash yields and sulfur contents are

usually used because of the deficiency of hazardous trace

element data.

3.2 Ash yields and sulfur

Ash is the residue of coal combustion or conversion. Ash

yields are related to the amount of mineral matter in coal

(Gluskoter 1975; Ward 2002, 2016) and to the conditions

used to create and measure the ash (Yang and Han 1979;

Suárez-Ruiz and Crelling 2008; GB/T 212–2008 2008).

There are several earlier researches about distribution of

coals with different ash yields in China (Li and Zhai 1992;

Li and Fei 1996; Yuan 1999). These studies showed that

Chinese commercial coals have primarily low-medium

(10.01%–20.00%) and medium (20.01%–30.00%) ash

yields. The latest national potential evaluation of coal

resources in China showed that the lowest reserve-weigh-

ted average ash yield is associated with the early and

middle Jurassic coals and the highest is associated with the

Paleogene coals (Tang et al. 2013). Coals, formed from

terrestrial sources, usually have high ash yields ([ 30%)

while coals that formed in a paralic environment often have

low ash yields (\ 20%) and high sulfur contents ([ 2%)

(Tang et al. 2013). Most coals in China have low-medium

and medium ash yields. The ash yields of coal resources in

southern China are generally higher than those of coal

resources in northern China (Yang 2015). We suggest that

studies on ash should gradually evolve into having a major

focus on the nature, composition, environment effects, and

recycling and utilization of coal ash.

Sulfur is one of the harmful elements in coal. It displays

two forms of occurrence—inorganic and organic sulfur

(Chou 2012; Tang et al. 2015). The traditional ‘‘forms of

sulfur’’ analysis reports pyritic sulfur (pyrite and marcasite),

sulfatic sulfur (gypsum, iron sulfates, etc.), and organic

sulfur. Organic and pyritic sulfur in coal are combustible,

and will release harmful SO2 during coal combustion. In the

early 20th century, American scholars Thissen and White

began studying sulfur in coal (White 1913). There are many

researches on sulfur in Chinese coal (Hong et al. 1992; Chen

1994; Li and Zhai 1994; Tang 1993; Ren et al. 1994; Lei et al.

1995; Li 1998;Chou 1999; Zhou et al. 1999, 2000; Tang et al.

2002; Hu et al. 2005a, b; Luo et al. 2005; Dai et al. 2008;

Tang et al. 2015). These studies on sulfur in coal tend to focus

either on organic sulfur or on inorganic sulfur. Domestic

researches on inorganic sulfur began earlier than organic

sulfur. The studies on inorganic sulfur mainly include the

nature and genesis of pyritic sulfur (Tang 1993; Tang and

Ren 1996; Liu et al. 2000), and the removal of inorganic

sulfur (Thoms 1995; Liu 2015). Researches on organic sulfur

examine the structure of organosulfur compounds in coal,

occurrence, geological genesis, distribution, and removal

(Kang et al. 1999; Tang et al. 2002; Hu et al. 2005a; Du 2014;

Wei et al. 2015). It is easier to remove inorganic sulfur than

to remove organic sulfur in coal (Chen 1994; Chou 1997;Dai

et al. 2000a; Chou 2012). Recently, there have been studies

on the removal of organic and inorganic sulfur using

microwave treatments (Cai 2013; Wei et al. 2018; Xu and

Tao 2018). The statistical results of the reserve-weighted

average of the sulfur contents in coal showed that the range of

sulfur contents in Chinese coals is wide (0.02%–10.48%)

(Tang et al. 2015). Sulfur contents in the late Permian coals

are the highest, followed by the late Carboniferous coals, and

those of the early and middle Jurassic coals are the lowest

(Luo et al. 2005; Tang et al. 2015).

3.3 Trace elements in coal

Trace elements in coal, with content less than 1 wt%.,

include most elements in the periodic table (Tang and

Huang 2004). More than 80 trace elements can be detected

in coal, coal combustion products, and coal-bed methane

(Tang and Huang 2004). Finkelman (1995) discussed the

environmentally sensitive trace elements in coal. Hazar-

dous trace elements, including 22 kinds by listed Ren et al.

(1999a), refer to those trace elements that are toxic,
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radioactive, carcinogenic or potentially harmful to the

environment (Zhao 1997; Zhao et al. 1998; Ren et al.

1999a, 2006). Swaine (2000) studied the environmental

interest in trace elements in coal.

There are many researches on trace elements in

domestic Chinese coals (Chen et al. 1986; Sun and Jervis

1986; Wang and Ren 1994; Huang et al. 1999, 2001; Liu

et al. 1999a; b; Ren et al. 1999a, b; Bai et al. 2004; Tang

and Huang 2004; Dai et al. 2006b, 2012a, b, 2014, 2018;

Song et al. 2010; Cheng et al. 2013; Bai et al.

2014, 2017a, b; Xie et al. 2014; Zhang et al. 2016; Zhou

et al. 2017; Wang et al. 2019b) and in coals from other

nations (Gluskoter 1975; Bouška 1981; Swaine 1990, 2000;

Swaine and Goodarzi 1995; Finkelman 1993, 1995;

Finkelman and Gross 1999; Ketris and Yudovich 2009;

Say-Gee and Wan 2011; Nakajima and Taira 2014; Hot

et al. 2016; Arbuzov et al. 2019). The authoritative back-

ground values of trace elements in Chinese coals were

obtained by Dai et al. (2012a, b) and an evaluation formula

of enrichment coefficients of trace elements was estab-

lished by Dai et al. (2014). Recently, the emphases of

researches on trace elements are on their behavior during

coal utilization (Tang et al. 2018a; b), their health impacts

(Dai et al. 2014; Finkelman and Tian 2018), and recovery

of valuable trace elements (Dai et al. 2006b; Seredin and

Dai 2012; Dai et al. 2014, 2016; Dai and Finkelman 2017).

This last topic is illustrated by the fact that germanium has

achieved industrial extraction (Tang and Huang 2004).

The national Key Basic Research Programon Distribu-

tion and Enrichment Mechanisms of Hazardous Elements

in Coal and Preventing and Controlling of Environmental

Pollution, for which Prof. Shifeng Dai was mainly

responsible, focused on five hazardous elements (mercury,

arsenic, fluorine, beryllium, and uranium), and directed

national attention to research on trace elements in coal.

Many of the trace elements in coal are capable of occurring

in more than one chemical form. Consequently, they can

also have different physical, chemical, and biological

properties and can exhibit different environmental migra-

tion capacities when in their different forms. Understand-

ing the chemical form, fate and behavior, and enrichment

tendency of hazardous elements during coal utilization is of

great significance to accurately evaluate their potential

hazards to human health and to the environment, and to

control their emissions.

3.4 Geological guarantee for safe and efficient

mining

Geological guarantee technology for safe and efficient coal

mining is one of the key technologies for mining proposed

at the beginning of the 21st century. It mainly includes the

technology for prediction of changes in thickness of a coal

seam, prediction of surrounding rock stabilities, prediction

of geological structural conditions, prediction of hydroge-

ological conditions, high-resolution detection of under-

ground structures from the surface, and the drilling

technology (Wu et al. 2000; Peng et al. 2001, 2007; Liu

et al. 2004). The mine geological guarantee system for

high-yield and high-efficiency, based on the characteristics

of mechanization and higher centralization of the mine,

taking geological quantification as the guide, seeks to

realize dynamic management of geological work by means

of comprehensive technologies such as geophysical

prospecting, drilling, and advanced computer technology

(Peng et al. 2007). It also seeks to provide reliable geo-

logical guarantee for all aspects and stages involved in

mine designing, mining area arranging, production prepa-

ration, mining face arranging, and back-stoping (Peng et al.

2007).

In the process of coal mining, a reasonable mining plan

should be formulated with consideration of the geological

structural factors and according to basic geological data to

realize efficient and safe mining (Meng et al. 2012). The

green coal mining technology, originally proposed by

Minggao Qian, Academician of Chinese Academy of

Engineering, in 2003, referred to technology that aimed at

reducing environmental damage and waste of resources

during mining, improving the economic benefits of coal

enterprises, coordinating mining with environmental con-

cerns, and eventually achieving high efficiency and low

emissions (Qian 2003). Since 2000, researches on co-

mining of coal and coalbed methane have gradually

increased (Li and Xu 2002; Yuan 2009; Liu 2015; Ji 2015;

Zhang et al. 2017). Co-mining technologies of coal and gas

include pre-mining extraction of gas, gas extraction during

mining, and gas extraction after mining (Tao 2012).

Recently, most of these researches focus on coalbed -

methane in outburst coal seams (Tao 2012; Ji 2015; Liu

2015). For Chinese CCG, co-mining of coal and gas is

significant for improving coal mine safety conditions,

improving coal mine production efficiency and economic

efficiency, and reducing carbon dioxide emissions. With

continuous high-intensity mining of coal resources, the

shallow resources were progressively exhausted and the

depth of mining was gradually increasing. Therefore,

research on geological guarantees for mining of deep coal

resources was also carried out (Jia et al. 2012; Hu 2013).

Academician of Chinese Academy of Engineering Sup-

ing Peng summarized and provided a prospect of the

research on the development of mining and geological

evaluation of deep coal resources, and put forward four key

scientific problems urgently needed to be solved for the

development of deep coal resources (Peng 2008). They are

(1) the environment of formation of deep coal resources

and its effect on coal seams and coal quality, (2) the
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distribution of high crustal stress, high geothermal gradi-

ents, and high volumes confined water in the deep part of a

coal mine, (3) theories for the detection and methods of

occurrence of such conditions in deep coal resources, and

(4) theories and methods for exploration and evaluation of

deep coal resources (Peng 2008). This work clearly indi-

cated the necessity and importance of fundamental geo-

logical research for safe and efficient coal mining.

Much research has been done on geological guarantee

for mining of coal resources in different areas or in dif-

ferent geological conditions (Qin et al. 2014; Cao et al.

2018; Xie et al. 2018; Wang et al. 2019a). With the

development of coal exploration technology, a new system

of theory and technology for comprehensive coal geolog-

ical exploration with its own Chinese characteristics was

established (Wang 2013) and a new concept of ‘‘green coal

resources’’ was proposed (Wang et al. 2017b; Yuan et al.

2018). This new concept can provide geological and

technological support for guaranteeing national energy

security (Zhao 2018). The new coal geological exploration

technology mainly includes six aspects. They are the

geological guarantee technology for exploration and green

mining of green coal resources, the geological guarantee

technology for co-exploration and mining of coal-associ-

ated mineral resources, the geological guarantee technol-

ogy for ‘‘geology?’’ serving the construction of ecological

civilization, the comprehensive management and utiliza-

tion technology for the closure of mines and remediation of

mining subsidence areas, the geological guarantee tech-

nology for the energy and mineral resources in the ‘‘Belt

and Road Initiative’’ areas, and promoting the ‘‘Internet?’’

action (Zhao 2018).

3.5 Coal-associated pollution and mine reclamation

The coal-associated impacts on environment and human

health can be divided into four categories according to

different processes (Finkelman 1995, 1999; Finkelman and

Gross 1999; Finkelman et al. 1999; Suárez-Ruiz and

Crelling 2008; Finkelman and Tian 2018): the environ-

mental impacts of underground coal seams, mainly

including leaching of hazardous substances and in-

situ combustion to release greenhouse gases; the environ-

mental impacts from coal mining, mainly involving visual

blight, land subsidence, quality degradation of surface and

underground water, the desolation of farmland, and eco-

logical deterioration; the environmental impacts of coal

transportation and processing, mainly consisting of dust,

spontaneous combustion, leaching, gangue, and coal

washing sewage; and the environmental impacts from coal

combustion, mainly including thermal pollution, acid rain,

smog, climate change, the release of hazardous trace ele-

ments, and coal combustion products (CCPs) (Finkelman

et al. 1999; Lin et al. 2004; Suárez-Ruiz and Crelling 2008;

Dai et al. 2006a, 2012a; Wu 2010; Huang et al. 2014; Guan

et al. 2014; Ma et al. 2017). Comprehensive use of ‘‘coal

green mining technology’’ can greatly reduce environ-

mental pollution associated with coal mining, including

water conservation technologies, filling and strip-mining

technology with separation grouting, coal and gas co-

mining technology, coal seam roadway supporting tech-

nology, the technology of reducing gangue emissions, and

underground gasification technology (Qian 2003). CCT is

effective at preventing and controlling pollution caused by

coal processing and utilization (Zheng 1996). Methods to

prevent and control pollution associated with coal com-

bustion can be divided into three types: cleaning and pro-

cessing the coal before combustion, improving process

conditions during combustion to make coal fully burned,

and treatment of flue gas after combustion to reduce

emissions (Zheng 1996). Vigorously developing and pro-

moting CCT is key to effectively prevent and control coal-

source pollution. As we discuss in this paper, CCT needs

the support of CCG.

Mine reclamation involves the series of activities or

processes that take measures to remediate the ecological

damage and environmental pollution caused by mining,

and to recover or restore the land to the situation it was in

before mining began. Reclamation is aimed at the protec-

tion of the regional ecological environment in the same

time frame as mining (Hu et al. 2005a, b). Since the later

20th century, mine reclamation has gradually become a

research focus of many scholars (Hu et al.

2005a, b, 2008, 2011, 2014, 2016; Wang et al. 2010; Bian

2011; Bi et al. 2014; Bi 2017; Wang et al. 2017a).

Recently, the ‘‘One Belt and One Road Initiative’’ also

brought opportunities and challenges to research on mine

reclamation (Hu 2016). Mine reclamation is consistent with

the spirit of constructing an ecological civilization in

China, an undertaking which needs continuous inputs from

research.

4 Progress of clean coal geology in China

The progress of CCG in China can be divided into four

stages, each of which covers a period of about 10 years.

Focused efforts on CCG began in the 1980s.

The beginning stage (1980–1990): In China, the earliest

geological systematic research related to coal preparation

began in the 1980s with the studies on sulfur occurrence

and washability of coals from Nantong and Songzao coal

fields in Chongqing, China carried out by Ren et al. (1994)

and by other scholars (Su and Ren 1992; Tang et al.

1993, 1995).
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The exploring stage (1990–2000): In the 1990s, the

occurrence and removal of sulfur and minerals in coals

from the Wuda coal field in Inner Mongolia was studied by

Hou et al. (1997),Tang et al. (1999), and Dai et al. (2000b).

These researches were mainly about coal preparation and

processing.

The mature stage (2000–2010): Geological technology

and dynamic evaluation were used to study the clean uti-

lization of coals in Wuda coalfield (Li 2000). In 2002, the

geological technology of clean use of coal, carried out by

Prof. Yuegang Tang, was honored the provincial First

Prize of Scientific and Technological Progress by the

Ministry of Education of the People’s Republic of China.

Systematic research on CCG of resources in China was

published by Tang et al. (2006), with a focus on the nature

and transformation of sulfur and potentially hazardous

trace elements in coal. In this research, systems of cleaning

potential evaluation were established and applied to nation

wide coal resources (Tang et al. 2006). The organic geo-

chemistry of trace elements in coal was also studied (Zhu

et al. 2001, 2003, 2005; Liu et al. 2003; Zheng et al. 2006),

supported by the Natural Science Foundation Project

‘‘Average Chemical Composition of Chinese Coals and

Organic Geochemistry of Hazardous Elements in Coal’’

with leadership by Prof. Baoshan Zheng. Geological and

geochemical theories and evaluation of cleaning potentials

began to be applied to guide the clean utilization of coal,

corresponding to the mature stage of CCG in China.

The establishment stage (2010-the present): The latest

potential evaluation of national coal resources (Tang et al.

2013) has been finished. Two evaluation systems—for coal

quality (Tang et al. 2012) and for cleaning potential (Yang

et al. 2011)—were used in this evaluation work. Addi-

tionally, the clean coal geological professional committee

was established in Changsha, Hunan province in 2016.

These studies and the information they produced marked

the establishment stage of Chinese CCG. In recent years,

there have been some new achievements in CCG in China,

such as the concept of cleanability proposed by Tang et al.

(2017), studies of the behaviors of potentially hazardous

trace elements during coal gasification (Tang et al.

2018a, b; Wang et al. 2019b), a review of valuable ele-

ments in Chinese coals (Dai et al. 2016), and studies of the

health impacts of coal utilization (Finkelman and Tian

2018). Nevertheless, these researches are only some of the

component parts of the overall field of CCG. There remains

much additional work needing to be done in CGG, such as

investigations of the complex transformations of mineral

matter during different coal utilization processes, the

relationship between the behavior of mineral matter and its

geological origin, and the optimum means of utilizing coals

with different qualities.

5 Summary

CCG was redefined as the discipline comprehensively

researching the genesis, nature, distribution, cleaning

potential, clean utilization and environmental effects of

coal resources that can be cleaned by CCT.

The research contents of CCG involve investigating and

establishing the cleaning potential evaluation of coals,

geological guarantee for safe and efficient coal mining,

sulfur and mineral matter contents in coal, preventing and

controlling of emissions associated with coal, and coal

mine reclamation.

The progress of CCG in China can be divided into four

stages—the beginning, exploring, mature, and establish-

ment stages. In China, there have been some new

achievements in CCG in recent years, but there remain

many scientific problems that needed further research.

6 Challenge and forecast

CCG in China has been rapidly developed for about

40 years as a new, diverse, and comprehensive discipline.

Nevertheless, there still are several scientific problems in

the research field of CCG, shown as follows.

(1) The health impacts of a single element need to be

evaluated in light of the fact that there could be synergy or

antagonism between the effects of the element being

studied and the many other elements that may also affect

health.

(2) Comprehensive analysis of mass balances around

coal utilization process is weak and there is no systemic

cleanability index that indicates the cleaning potential of

coals through the whole process from mining to utilization.

(3) Because of the complexity, diversity, and multi-

plicity of the geological settings of coal in China, the mode

of occurrence of hazardous substances in coal has a great

temporal and spatial variation. All the same, there has not

yet been research on the distribution of coals with different

cleaning characteristics from the endogenetic and exoge-

netic geological processes of a coal basin.

(4) The relationship between the geologic genesis of

potentially hazardous substances in coal and the technol-

ogy of coal utilization is poorly explored, which in turn

means that the distribution, transformation, and removal

mechanism of hazardous materials having different geo-

logic genesis needs to be researched during different coal

utilization processes.

(5) The prevention and controlling of emissions and

pollution associated with hazardous trace elements in coal

are not yet strongly established.
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(6) A comprehensive evaluation system of cleaning

potential, consisting of selection of indices, calculation of

weighted values, evaluation methods, and classification

schemes for cleaning potentials, remains to be established.

The policies adjusting the structure of primary energy

use and controlling carbon emissions are favorable for coal

only if it is utilized very efficiently. At the same time, these

policies promote further research in CCG, such developing

routes to coal-derived graphene, and studying the prospects

for coal use as fertilizer. The results of these and many

other studies can provide a reference for improving the

utilization efficiency and the reduction of emissions. As for

CCT, effective CCUS and the prediction and control of the

rapid and complex changes of mineral matter during coal

combustion, gasification, liquefaction, and pyrolysis are

major scientific challenges. The basic materials and data

regarding the cleaning potentials of national coal resources

remain to be established. Additionally, the combination of

CCG with CCT is of great significance for the development

of CCG.

Biology, physics, and artificial intelligence (AI) are

significant fields of scientific development in the future, all

of which provide opportunities and challenges for the

development of CCG in China. The development of

modern biology will bring new insights and methods into

the studies on coal formation, on the utilization of organic

components in coal, and on biological processing of coal

using enzymes or microorganisms. Physics will provide

new methods for research on microstructure of coal to

reveal precisely the modes of occurrence of hazardous

elements in coal. Such improved information likely will

provide basic data for the evaluation of cleaning potentials.

Using data on ash yields, sulfur contents, and hazardous

trace elements, the space–time distribution of coal with

different cleaning potentials can be achieved by applying

AI technology and techniques for meta-analysis of large

data sets, the results of which can provide a reference for

efficient mining and clean utilization of coal resources.
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